

W
h
it
e
 P
a
p
e
r

Intel PROSet For

Windows* Device Manager

WMI Provider User’s Guide

White Paper
Revision 1.6

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

2

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining,
critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Intel®, Intel® PRO Network Connections, and Intel® PROSet are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2007, Intel Corporation

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

3

Table of ContentsTable of ContentsTable of ContentsTable of Contents

Introduction .. 5

Technology Overview ... 6

Web-based Enterprise Management .. 6

Windows Management Instrumentation .. 6

Installed Files ... 8

Namespaces .. 10

IntelNCS2 .. 10

CIMv2 .. 10

Providers... 10

WBEM Context ... 10

Locales and Localization ... 11

Error Reporting ... 12

Class Summary ... 14

IntelNCS2 Class Definitions ... 15

Graphic Conventions ... 15

IANet_NetService .. 15

Adapter Classes ... 17

IANet_EthernetAdapter ... 17

IANet_PhysicalEthernetAdapter ... 17

Adapter Settings ... 25

IANet_Setting .. 25

IANet_AdapterSetting ... 25

IANet_AdapterSettingInt ... 26

IANet_AdapterSettingEnum .. 27

IANet_AdapterSettingSlider .. 27

IANet_AdapterSettingMultiString ... 28

IANet_AdapterSettingMultiSelection .. 29

IANet_AdapterSettingString ... 29

Boot Agent Classes ... 31

IANet_BootAgent... 31

IANet_BootAgent_iSCSI_Adapters ... 32

IANet_BootAgentSetting... 33

IANet_BootAgentSettingEnum .. 34

IANet_BootAgentSettingInt ... 35

IANet_BootAgentSettingString ... 35

Team Classes .. 37

IANet_LogicalEthernetAdapter .. 37

IANet_TeamOfAdapters ... 38

Team Settings .. 40

IANet_TeamSetting .. 40

IANet_TeamSettingInt .. 41

IANet_TeamSettingEnum .. 42

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

4

IANet_TeamSettingSlider .. 42

IANet_TeamSettingMultiSelection ... 43

IANet_TeamSettingString ... 43

VLAN Classes .. 44

IANet_802dot1QVLANService ... 44

IANet_VLAN .. 45

IANet_VLANSetting .. 46

IANet_VLANSettingInt .. 46

IANet_VLANSettingEnum .. 47

IANet_VLANSettingSlider .. 47

IANet_VLANSettingMultiSelection ... 48

IANet_VLANSettingString ... 49

Diagnostic Classes .. 50

IANet_DiagTest ... 50

IANet_DiagResult ... 52

IANet_DiagSetting ... 53

Association Classes ... 54

IANet_TeamedMemberAdapter ... 54

IANet_AdapterToSettingAssoc .. 55

IANet_BootAgentToBootAgentSettingAssoc .. 55

CIMv2 Class Definitions ... 59

IANet_DiagSetting ... 59

IANet_DiagSettingForTest ... 59

IANet_EthernetAdapter ... 59

IANet_PhysicalEthernetAdapter ... 59

IANet_DiagTest ... 59

IANet_DiagResult ... 59

IANet_DiagResultForMSE .. 60

IANet_DiagResultForTest ... 60

Appendix ... 61

Related Documents ... 61

Terminology .. 61

Working Examples ... 61

Addendum to NCS2 Architecture .. 67

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

5

This document is divided into several sections:

� Technology overview – an overview of WMI technology.

� Class summaries – the class and namespace details for the NCS2 architecture.

� Working examples – how to use the NCS2 architecture to manage Intel® network devices.

Intel® PROSet for Windows Device Manager WMI providers offer the following features:

Category Features

Adapter � Enumerate all supported physical network adapters

� Update settings for an adapter

� Obtain an adapter’s physical device information

� Monitor adapter link

� Uninstall an adapter driver

� Query IPv4 and IPv6 adapter addresses

Boot � Change an adapter’s boot agent settings

� View and modify adapter iSCSI settings

Diagnostics � Enumerate diagnostic tests, settings, and results

� Run or stop a diagnostic test on an installed adapter

Team � Enumerate supported team types

� Create or remove a team of adapters

� Update team settings

� Add or remove team member adapters

� Change team member priorities

� Obtain the IPv4 protocol settings for a team

VLAN � Create, discover, or remove Virtual LANs on an adapter or team

� Update VLAN settings

� Obtain the IPv4 protocol settings for a VLAN

Introduction
Intel® PROSet for Windows* Device Manager deploys Network Configuration Services

version 2.0, an easy to use solution for deploying and managing all Intel end-station

networking technologies using industry standard methods. The NCS2 architecture works

closely with the Windows Management Instrumentation (WMI) service to provide remote

management of Intel network devices. This document describes the WMI classes and

providers supplied by Intel® PROSet for Windows Device Manager.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

6

Technology Overview
This section offers an overview of Windows Management Instrumentation in Microsoft operating systems

and is recommended for anyone not familiar with the architecture. Further reading on this topic is

encouraged and additional are links are provided at the end of this section.

Web-based Enterprise Management
Web-based Enterprise Management (WBEM) is a Distributed Management Task Force (DMTF) initiative

providing enterprise system managers with a standardized, cost-effective method for end station

management. The WBEM initiative encompasses a multitude of tasks, ranging from simple workstation

configuration to full-scale enterprise management across multiple platforms. Central to the initiative is the

Common Information Model (CIM), an extensible data model representing objects in typical management

environments, and the Managed Object Format (MOF) language for defining and storing modeled data.

Windows Management Instrumentation
Windows Management Instrumentation (WMI) is the Microsoft implementation of WBEM for Windows

operating systems. It exposes a programmable interface to view and interact with management objects.

Running as a system service, this operating system component offers many powerful capabilities.

WMI consists of the following components:

� Management applications

� Managed objects

� Providers

� Management infrastructure

� A COM API to allow access to management information.

Management applications process or display data from managed objects, which are logical or physical

enterprise components. These components are modeled using CIM and accessed by applications through

Windows Management. Providers supply Windows Management with data from managed objects, handle

requests from applications and notification of events. The providers for Intel® PROSet for Windows Device

Manager play a central role in network card configuration management.

Windows management consists of the CIM Object Manager (for handling the communication between

management applications and providers) and a central storage area (CIMOM object repository). Data is placed

in the repository using either the MOF language compiler or the Windows Management API.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

The following diagram shows the interrelationship of these components:

Figure 1 – Windows Management Architecture

Common Information Model

The Common Information Model (CIM)

physical objects in a managed environment. Managed objects are represented using object

constructs as classes. The classes include properties to

DMTF to be operating system and platform independent, but

specification. WBEM technology includes an extension of CIM for

platforms. Please refer to the DMTF CIM schema on the DMTF web site for more information.

for Windows Device Manager is based on CIM Schema version 2.6.

CIM defines three levels of classes:

� Classes representing managed objects that apply to all ar

basic vocabulary for analyzing and describing managed systems and are part of what is referred to as

the “core model.”

� Classes representing managed objects that apply to a specific management area but are indepen

of a particular implementation or technology. These classes are part of what is referred to as the

common model - an extension of the core model.

� Classes representing managed objects that are technology

These classes typically apply to specific platforms such as UNIX or the

Intel PROSet for Windows Device Manager WMI User’s Guide

The following diagram shows the interrelationship of these components:

Windows Management Architecture

(CIM) presents a consistent and unified view of all types of logical and

physical objects in a managed environment. Managed objects are represented using object

constructs as classes. The classes include properties to describe data and methods. CIM was

and platform independent, but the Microsoft implementation pred

includes an extension of CIM for Microsoft Windows operating system

Please refer to the DMTF CIM schema on the DMTF web site for more information.

is based on CIM Schema version 2.6.

CIM defines three levels of classes:

Classes representing managed objects that apply to all areas of management. These classes provide a

basic vocabulary for analyzing and describing managed systems and are part of what is referred to as

Classes representing managed objects that apply to a specific management area but are indepen

of a particular implementation or technology. These classes are part of what is referred to as the

an extension of the core model.

Classes representing managed objects that are technology-specific additions to the common model.

lasses typically apply to specific platforms such as UNIX or the Microsoft Win32 environme

7

presents a consistent and unified view of all types of logical and

physical objects in a managed environment. Managed objects are represented using object-oriented

ibe data and methods. CIM was designed by the

the Microsoft implementation predominates the

Microsoft Windows operating system

Please refer to the DMTF CIM schema on the DMTF web site for more information. Intel® PROSet

eas of management. These classes provide a

basic vocabulary for analyzing and describing managed systems and are part of what is referred to as

Classes representing managed objects that apply to a specific management area but are independent

of a particular implementation or technology. These classes are part of what is referred to as the

specific additions to the common model.

Win32 environment.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

8

Inheritance Relationships

Classes can be related by inheritance, where a child class includes data and methods from its parent class.

Inheritance relationships are not typically visible to the management application using them, nor are the

applications required to know the inheritance hierarchy. Class hierarchies can be viewed with CIM repository

viewers.

Association Classes

Windows Management also supports association classes. Association classes link two different classes to

model a user-defined relationship, and are visible to management applications. Third-party developers can

also define association classes for their management environment. Associations represent a relationship

between two WMI objects (classes). The properties of the association class include two pointers or

references, each linking to a different instance. The relationships are maintained by path only; the association

class does not have the capabability to modify the instances it links. For additional information on CIM, visit

http://www.dmtf.org

CIM Tools

� Wbemtest.exe has native support any Windows operating system where WMI has been installed.

Examples are included at the end of this document.

� CIM Studio is a browser based implementation of WBEMTest.exe and much easier to use. However, it

requires download and install an additional program. To locate this tool, search for “WMI

Administrative Tools” on Microsoft’s web site (www.microsoft.com).

Installed Files

Executables

When information is requested about Intel® PROSet for Windows Device Manager through a WMI service call,

one or both of the following executable files will launched. Both of these providers will be referred to as

“NCS2 WMI Providers” in this document. There is no need to directly manipulate these files; it is enough to

know they exist. Execution and shutdown of these programs is completely transparent to user.

Filename Description

Ncs2Prov.exe The instance and method provider for the NCS2 architecture in the “root\IntelNCS2” namespace.

This provider will be called “NCS2 WMI Provider” for the remainder of this document.

NCS2Diag.exe The instance and method provider for the NCS2 architecture in the “root\CIMv2” namespace.

This provider will be called “NCS2 CDM Provider” for the remainder of this document.

Dynamically Linked Libraries

The following dynamically linked libraries are used by Intel® PROSet for Windows Device Manager.

Filename Description

Ncs2Core.dll Implements the Ethernet Adapter Schema.

Ncs2Diag.dll Implements the Diagnostics Schema.

Ncs2Boot.dll Implements the Boot Agent Schema.

Ncs2Team.dll Implements the Team Schema.

Ncs2VLAN.dll Implements the VLAN Schema.

Ncs2InstUtility.dll Implements the common utility functions.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

9

MOF Files

A “MOF” file is a Managed Object Format file which contains information about WMI classes. A set of basic

MOF files are included on distribution media for reference only. There are separate MOF files for language

neutral and language specific data, which become available upon installation.

The following are .mof files for the ‘root\IntelNCS2’ namespace:

Filename Description

ICmLn.mof CIM base classes on which the NCS2 classes depend.

ICmEnu.mfl US English version of the CIM base classes.

ICoreLn.mof Classes for the IEEE 802.3 adapters.

ICoreEnu.mfl US English textual amendments to the adapter classes.

IBootLn.mof Classes for the IEEE 802.3 boot service

IBootEnu.mfl US English textual amendments to the 802.3 boot service classes.

IDiagLn.mof Classes for the CDM (Common Diagnostic Model).

IDiagEnu.mfl US English textual amendments to the CDM classes.

ITeamLn.mof Classes for the IEEE 802.3 teams.

ITeamEnu.mfl US English textual amendments to the team classes.

IVLANLn.mof Classes for the IEEE 802.3 VLANs.

IVLANEnu.mfl US English textual amendments to the VLAN classes.

Security

The NCS2 WMI Providers uses client impersonation to manage the security. Every call will be made in the

client’s own security context. This context is passed down to the lower layers. An operation may fail if the

user does not have suitable administrative rights on the target machine.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

10

Namespaces
CIM classes are organized into namespaces, a logical partitioning of the CIM object management repository.

Installation of Intel® PROSet for Windows Device Manager will create a new namespace “root\IntelNCS2” and

add information to the existing “root\CIMv2” namespace. The NCS2 architecture uses both namespaces to

organize management information and make it available to clients.

IntelNCS2
The root\IntelNCS2 namespace contains the majority of information about Intel® PROSet for Windows Device

Manager configuration and is based on CIM version 2.6. The root\CIMv2 namespace was not used as a

primary because it is based on CIM version 2.2 and has object key differences. Classes in this namespace have

been extended through class inheritance to contain information specific to the NCS2 architecture. All

operations regarding adapters*, teams, VLANs, boot agent settings, and diagnostics* must interact with this

namespace.

CIMv2
New classes are installed into the root\CIMv2 namespace to support network card diagnostics for legacy

applications. The decision to add support for diagnostics in this namespace was made for backward

compatibility. Although some classes in the root\CIMv2 namespace have the same nomenclature and

properties as their counterparts in the root\IntelNCS2 namespace, any properties not relating to diagnostics

have been disabled in the root\CIMv2 versions. These differences are outlined later.

Providers
Each supported namespace has its own provider, which handles requests specific to Intel® PROSet for

Windows Device Manager WMI class methods and properties. Although these providers are separate

executable files, usage rules and limitations for one apply to the other.

Name Executable Description

NCS2 WMI

Provider

NCS2Prov.exe Primary provider for queries to the root\IntelNCS2 namespace.

NCS2 CDM

Provider

NCSDiag.exe Diagnostics provider which interfaces with some classes installed in the

root\CIMv2 namespace.

WBEM Context

IWbemContext

IWbemContext is a WMI programming interface which allows users to optionally communicate additional

parameters to providers when submitting function calls. If you plan on making any changes to the NCS2

configuration through a WMI call, then you must pass a IWbemContext parameter. These optional parameters

are constructed by the user and passed as part of a WbemServices call. Interaction with NCS2 is dependent

upon IWbemContext objects when modify operations are requested. Thus, any request to NCS2 for a

configuration change requires a IWbemContext object to be constructed by the user and passed in the

WbemServices function call. Use of these context qualifiers facilitates exclusive client locks to prevent more

**** Adapter and diagnostic information is available in either the root\CIMv2 or root\IntelNCS2 namespaces.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

11

than one change request. A lock is obtained, used, and released whenever a change in NCS2 configuration is

required. Data polling operations do not require use of this object. The following table contains the context

qualifiers (named values) used by the NCS2 Providers. ClientSetId is only used in conjunction with specific

functional areas of the NCS2 WMI Provider, whereas MachineName can be set for all IWbemServices calls. A

NULL context can be used for read operations

Context Qualifier Variant Type Description

ClientSetId VT_BSTR A client handle allows the NCS2 software to manage single access to the

configuration. The application cannot make any changes to classes

without first establishing this; see the section on the IANet_NetService

class to see how to establish and use a client handle.

MachineName VT_BSTR The name of the machine that is connecting to the IntelNCS2 provider.

This is required for logging.

Use Cases

A session handle is required to change a configuration and is managed through the root\IntelNCS2

namespace classes. This identification number allows the NCS2 software to manage single access to the

configuration, thereby preventing changes from more than one source at a time. Understanding the role of

these client handles is crucial for successful remote management changes.

Getting a Client Handle

The client must get the object path of the single instance of IANet_NetService before accessing the client

handle. Call IWbemServices::CreateInstanceEnum and pass the name of the class: IANet_NetService. (this is

equivalent to calling IWbemServices::ExecQuery with the query “SELECT * FROM IANet_NetService). Before

making any changes to the configuration, the client must get a client handle. Use the BeginApply method to

obtain a numeric handle and lock the software from additional access requests. This lock will remain in place

until an apply operation is performed or it times out (usually 2 minutes).

Using a Client Handle in the IWbemContext Object

After the client handle is obtained, a IWbemContext object has to be created. Store the client handle in the

ClientSetId qualifier of this object. A pointer to this COM object should be passed to every call into

IWbemServices. The client handle is not required when making calls to access the IANet_NetService object as

this takes the handle as an explicit argument. By passing the client handle as an argument with the method,

the software stack can identify the source of the request.

Finishing with a Client Handle

After changing the configuration, call the IANet_NetService::Apply() method to commit the changes. The

client handle integer is passed as an argument to the Apply() method. This may return a follow-up action

code (e.g., reboot the system before the changes can take effect). If any devices became disabled during

change operations, committing an Apply() method will enable them.

Locales and Localization

Localized MOF files

All the MOF files used by the NCS2 WMI Provider are localized according to the Microsoft Windows

Management Instrumentation globalization model. To accomplish this, each class definition is separated into

the following:

� a language-neutral version that contains only the basic class definition in the .mof file.

� a language-specific version that contains localized information, such as property descriptions that are

specific to a locale in the corresponding .mfl file.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

12

Class Storage

The language-specific class definitions are stored in a child sub-namespace beneath the namespace that

contains a language-neutral basic class definition. For example, for the NCS2 WMI Provider, a child namespace

ms_409 will exist beneath the root/IntelNCS2 namespace for the English locale. Similarly, there exists a child

sub-namespace for each supported language beneath the root/IntelNCS2 namespace.

Runtime Support

To retrieve localized data, a WMI application can specify the locale using strLocale parameter in

SWbemLocator::ConnectServer and IWbemLocator::ConnectServer calls. If the locale is not specified, the

default

locale for that system will be used. (e.g. MS_409 for US English). This locale is used to select the correct

namespace when adding in the English strings. In addition, IWbemServices::GetObject,

SWbemServices.GetObject, IWbemServices:: ExecQuery, and SWbemServices.ExecQuery must specify the

WBEM_FLAG_USER_AMENDED_QUALIFIERS flag to request localized data stored in the localized namespace,

along with the basic definition. This is required in all functions that produce displayable values using value

maps or display descriptions or other amended qualifiers from the MOF files.

Error Reporting

IANet_ExtendedStatus

This section details how to handle errors generated by the NCS2 Providers. How and when an error object is

returned depends on whether a call is synchronous, semi-synchronous or asynchronous. In most cases, the

HRESULT is set to WBEM_E_FAILED when an error occurs. At this point, however, it is unknown whether WMI

or a NCS2 Provider generated the error.

Getting the Error Object

Synchronous Calls

Use GetErrorInfo() to get the IErrorInfo object. Use QueryInterface() to get the IWbemClassObject that

contains the error information.

Asynchronous Calls

The IWbemClassObject is passed back as the last item in the last SetStatus() call. After you get the error

object instance, you can check the __Class property to determine the origin of the error. WMI creates an

instance of __ExtendedStatus, and the NCS2 WMI Provider creates an instance of IANet_ExtendedStatus for

errors relating to IANet_ classes and NCS2 WMI Provider. IANet_ExtendedStatus is derived from

__ExtendedStatus and contains the following attributes:

 Error Object Qualifiers

Context Qualifier Description

Description Description of the error tailored to the current locale.

File Code file where the error was generated.

Line Line number in the code file with the error.

ParameterInfo Class or attribute that was being utilized when the error occurred.

Operation Operation being attempted when the error occurred.

ProviderName Name of the provider that caused the error.

StatusCode Code returned from the internal call that failed.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

13

ClientSetHandle Client Set handle used for the operation.

RuleFailureReasons Reason for operation failure. An operation can fail because a technical rule has failed. (e.g., you

must have a management adapter in certain teams).

Error Codes

For all error codes, the NCS2 WMI Providers gives a description customized to the locale. Below is a list of

possible error codes. Error codes are in the form of HRESULT with severity set to one (1) and facility set to

ITF. An application may use these codes as a basis for a recovery action.

0x80040901 "WMI: Put property failed"

0x80040902 "WMI: No class object"

0x80040903 "WMI: Failed to create class"

0x80040904 "WMI: Failed to spawn instance of class"

0x80040905 "WMI: Failed to create safe array"

0x80040906 "WMI: Failed to put safe array"

0x80040907 "WMI: Failed to return object to WMI"

0x80040908 "WMI: Get property failed"

0x80040909 "WMI: Unexpected type while getting property"

0x8004090A "WMI: Class not implemented by this provider"

0x8004090B "WMI: Unable to parse WQL statement"

0x8004090C "WMI: Provider only supports WQL"

0x8004090D "WMI: Parameter in context has the wrong type"

0x8004090E "WMI: Error formatting debug log"

0x8004090F "WMI: bad object path"

0x80040910 "WMI: Failed to update setting"

0x80040911 "WMI:[Null parameter passed to method"

0x80040912 "Setting value too small"

0x80040913 "Setting value too big"

0x80040914 "Setting not in step"

0x80040915 "String setting is too long"

0x80040916 "Setting is not one of the allowed values"

0x80040917 "WMI: Qualifier not found"

0x80040918 "WMI: Qualifier set not found"

0x80040919 "WMI: Safe array access failed"

0x8004091A "WMI: Unhandled exception"

0x8004091B "WMI: Operation is not supported for this class"

0x8004091C "WMI: Unexpected event class"

0x8004091D "WMI: Bad event data"

0x8004091E "WMI: Operation succeeded with warnings"

0x8004081F "WMI: The NCS2 Service has been stopped"

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

14

Namespace : IntelNCS2

IANet_802dot1QVLANService

IANet_AdapterSetting

IANet_AdapterSettingEnum

IANet_AdapterSettingInt

IANet_AdapterSettingMultiSelection

IANet_AdapterSettingMultiString

IANet_AdapterSettingSlider

IANet_AdapterSettingString

IANet_AdapterToSettingAssoc A

IANet_BootAgent

IANet_BootAgent_iSCSI_Adapters

IANet_BootAgentSetting

IANet_BootAgentSettingEnum

IANet_BootAgentSettingInt

IANet_BootAgentSettingString

IANet_BootAgentToBootAgentSettingAssoc A

IANet_Device802dot1QVLANServiceImplementation A

IANet_DeviceBootServiceImplementation A

IANet_DiagResult

IANet_DiagResultForMSE A

IANet_DiagResultForTest A

IANet_DiagSetting

IANet_DiagSettingForTest A

IANet_DiagTest

IANet_DiagTestForMSE A

IANet_EthernetAdapter

IANet_ExtendedStatus

IANet_LogicalEthernetAdapter

IANet_NetService

IANet_NetworkVirtualAdapter

Class Summary
The following classes are used by Intel® PROSet for Windows Device Manager.

A – Association class.

IANet_PhysicalEthernetAdapter

IANet_Setting

IANet_TeamedMemberAdapter

IANet_TeamOfAdapters

IANet_TeamSetting

IANet_TeamSettingEnum

IANet_TeamSettingInt

IANet_TeamSettingMultiSelection

IANet_TeamSettingSlider

IANet_TeamSettingString

IANet_TeamToTeamSettingAssoc A

IANet_VLAN

IANet_VLANFor A

IANet_VLANSetting

IANet_VLANSettingEnum

IANet_VLANSettingInt

IANet_VLANSettingMultiSelection

IANet_VLANSettingSlider

IANet_VLANSettingString

IANet_VLANToVLANSettingAssoc A

Namespace : CIMv2

IANet_DiagResult

IANet_DiagResultForMSE A

IANet_DiagResultForTest A

IANet_DiagSetting

IANet_DiagSettingForTest A

IANet_DiagTest

IANet_DiagTestForMSE A

IANet_EthernetAdapter

IANet_PhysicalEthernetAdapter

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

15

IntelNCS2 Class Definitions
The following section contains information for all classes in the root\IntelNCS2 namespace supported by

Intel® PROSet for Windows Device Manager.

Graphic Conventions
These conventions will describe relationships between classes defined in this namespace and those inherited

from CIM specification classes.

Denotes a class defined in the CIM specification. The properties of these parent

classes are inherited by child class definitions.

Represents a class defined in the NCS2 architecture, specific to Intel PROSet for

Windows Device Manager.

Represents an association class defined in the NCS2 architecture, specific to Intel

PROSet for Windows Device Manager.

This arrow indicates inheritance between one class and another.

IANet_NetService

Purpose

This class enables the client to establish active sessions where changes can be made to the configuration.

When requesting or applying a client lock handle, this class must be used : it exposes two methods for

performing these operations.

Instances

There is one instance of this object. The client should not rely on the key used for this class. Instead, the

client should get the instance of the class by enumerating all instances of IANet_NetService. The user cannot

create or delete instances of this class.

Supported Properties

Version - Contains the current version of the core provider.

Unsupported Properties

The following properties not supported: Caption, Description, Install Date, Started, Start Mode, Status.

Modifiable Properties

There are no user modifiable properties of this class.

CIM_Service IANet_NetService

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

16

Supported Methods

Method Returns Parameters Detail

BeginApply void [OUT] uint32

ClientSetHandle

Used to get a Client session handle , which should be placed in

the context object in the ClientSetId qualifier.

Apply void [IN] uint32

ClientSetHandle

[OUT] uint32

FollowupAction

Applies changes made with a particular session handle and

releases the session handle after it has been used. The uint32

argument returned is used by the provider to tell the

application the server must be rebooted before the changes

will take effect.

FollowupAction

1 (system reboot required)

0 (no reboot required)

Unsupported Methods

The following methods are not supported: StartService and StopService.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

17

Adapter Classes

IANet_EthernetAdapter

Purpose

This is an abstract base class which objectifies network characteristics of an Intel network card. The

IANet_EthernetAdapter class is inherited by IANet_LogicalEthernetAdapter and contains properties common

to both virtual and physical network devices. If you need information on teaming classes, reference

IANet_LogicalEthernetAdapter.

Associations

Association Class Association Partner

IANet_Device802dot1QVLANServiceImplementation IANet_802dot1QVLANService

IANet_PhysicalEthernetAdapter

Purpose

IANet_PhysicalEthernetAdapter defines the capabilities and status of all the installed Intel adapters.

Instances

Instances of this class will exist for all installed network adapters. Non-Intel network cards will be

represented by an instance of this class, although only a subset of the supported properties will have values.

Such adapters do not support some properties specific to Intel network drivers. The user cannot create

instances of IANet_PhysicalEthernetAdapter. Deleting an instance of IANet_PhysicalEthernetAdapter will

uninstall a physical adapter; a client handle is required for this operation.

Supported Properties

Name Type Description Values

AdapterStatus uint32 Adapter status specifies the

current status of the adapter. This

value is the sum of any of the

values which apply.

Example:

 51 = 1 + 2 + 16 + 32

1 Installed

2 DriverLoaded

4 HardwareMissing

16 HasDiag

32 HasLink

1024 HasTCOEnabled

2048 DeviceError

AdditionalAvailability uint16[] This is an inherited property; refer to parent class.

CIM_EthernetAdapter IANet_EthernetAdapter

CIM_EthernetAdapter IANet_EthernetAdapter IANet_PhysicalEthernetAdapter

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

18

Availability uint16 This is an inherited property; refer to parent class.

BusType uint16 Bus Type indicates the bus type. 0 Unknown

1 ISA

2 EISA

3 PCMCIA

4 Cardbus

5 PCI

6 PCI-X

7 PCI Express

Capabilities uint16[] Capabilities of the

PhysicalEthernetAdapter. For

example, the Device may support

AlertOnLan, WakeOnLan, Load

Balancing and/or FailOver. If

failover or load balancing

capabilities are listed, a

SpareGroup (failover) or

ExtraCapacityGroup (load

balancing) should also be defined

to completely describe the

capability.

Some capabilities are dependent

upon feature discovery in the

operating system. Therefore, a

capability may not be present

because operating system

requirements have not been met.

0 Unknown

1 Other

2 AlertOnLan

3 WakeOnLan

4 Adapter Fault Tolerance

5 Adaptive Load Balancing

6 IPSec Offload

7 ASF

8 GEC/802.3ad Static Link

Aggregation

9 Static Link Aggregation

10 IEEE 802.3ad Dynamic Link

Aggregation

11 Checksum Offload

12 Switch Fault Tolerance

13 Basic AlertOnLan

14 AlertOnLan 2

15 Security Offload AH

16 Security Offload ESP

17 Security Payload Tunnel

18 Security Payload Transport

19 Security IPV4 Packets

20 Authentication Algorithm

MD5

21 Authentication Algorithm

SHA1

22 Encryption Algorithm EAS

23 Encryption Algorithm DES

24 Encryption Algorithm 3DES

25 ESP Xmit Checksum

Encryption

26 ESP Xmit Checksum

Authentication

27 ESP Receive Checksum

Encryption

28 ESP Receive Checksum

Authentication

29 TCO Capability

30 Wake Up Capabilities

31 IP Checksum Offload

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

19

32 10 Mbps

33 100 Mbps

34 1000 Mbps

35 10000 Mbps

36 Teaming

37 VLAN

38 IEEE VLAN

39 ISL VLAN

40 Uninstallable

41 Identify Adapter Support

42 Cable Test Support

43 Diagnostic Support

44 Flash support

45 ICH Support

46 Usage Server

47 Vendor Intel

48 Phoneline PHY

49 Mobile

50 PowerManagement Support

51 Feature Not Supported

52 MFO

53 Pass Through

54 Quad-Port Support

55 Dedicated MAC Address

56 Jumbo Frame Support

57 Feature Not Supported

58 Signal Quality Test

59 Cable Offline Test

60 Adapter is LOM

61 Scalable Networking Pack

Capability

62 CB Platform Capability

63 iSCSI Capability

CapabilityDescriptions string[] This property is deprecated and is not in use.

Caption string This is an inherited property; refer to parent class

ControllerID uint32 The Controller ID identifies the

Ethernet controller that the

adapter uses. Adapters with

different DeviceIDs can have the

same Controller ID.

0 Unknown

1 Intel 82542

3 Intel 82543

6 Intel 82544 Controller

7 Intel 82540 Controller

8 Intel 82545 Controller

11 Intel 82541 Controller

13 Intel 82547 Controller

20 Intel 82571 Controller

30 Intel 82573 Controller

31 Intel 82574 Controller

40 Intel ESB2LAN Controller

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

20

50 Intel ICH8 Controller

51 Intel ICH9 Controller

52 Intel ICH10 Controller

60 Intel 82575 Controller

62 Intel 82576 Controller

63 Intel ADORAM_VIRTUAL

Controller

65537 Intel D100_A_STEP

Controller

65538 Intel D100_B_STEP

Controller

65539 Intel D100_C_STEP

Controller

65540 Intel D101_A_STEP

Controller

65541 Intel D101_B0_STEP

Controller

65542 Intel D101M_A_STEP

Controller

65543 Intel D101S_A_STEP

Controller

65544 Intel D102_A_STEP

Controller

65545 Intel D102_B_STEP

Controller

Controller

65546 Intel D102_C_STEP

Controller

Controller

65547 Intel D102_D_STEP

Controller

Controller

65548 Intel D102_E_STEP

Controller

Controller

65549 Intel D102_F_STEP

Controller

65550 Intel 82562_G Controller

65551 Intel 82562_GZ Controller

65552 Intel 82562_GX_GT

Controller

65553 Intel 82562 Controller

131073 Intel 82597 EX Controller

196609 Intel 82598 Controller

196610 Intel 82599 Controller

Description string This is an inherited property; refer to parent class.

DeviceID string This is an inherited property; refer to parent class.

EEPROMVersion string EEPROMVersion contains the EEPROM version of the device.

EnabledCapabilities uint16[] Specifies which capabilities are

enabled from the list of all

supported ones, defined in the

Please refer to the .Capabilities

property definition (above) to resolve

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

21

Capabilities array uint16 values to strings.

HardwareStatus uint32 Hardware status specifies the

current status of the hardware.

0 Unknown

1 Ready

2 Initializing

3 Reset

4 Closing

5 Not Ready

MaxSpeed uint16 This is an inherited property; refer to parent class.

MediaType uint16 MediaType indicates the media

which interfaces to this PHY.

0 Unknown

1 Copper

2 Fiber

3 Phone Line

4 CX4 Copper

5 Other

MiniPortInstance string This is an inherited property; refer to parent class.

MiniPortName string This is an inherited property; refer to parent class.

Name string This is an inherited property; refer to parent class.

NegotiatedLinkWidth uint16 Negotiated Link Width specifies

the negotiated link width of the

bus. Only PCI-Express adapters will

have a non zero value.

0 Unknown

1 x1

2 x2

4 x4

NetworkAddresses string[] This is an inherited property; refer to parent class.

OriginalDisplayName string If teaming is enabled on this adapter OriginalDisplayName will contain the

original display name of the adapter.

OtherCapabilityDescriptions string[] This property is deprecated and is not in use.

OtherEnabledCapabilities string[] This property is deprecated and is not in use.

OtherEnabledCapabilityIDs uint16[] This property is deprecated and is not in use.

OtherMediaType string This property is deprecated and is not in use.

OtherPhyDevice string This property is deprecated and is not in use.

PartNumber string PartNumber is the NIC's PBA manufacturing part number.

PCIDeviceID string PCI device Id of the device.

PermanentAddress string This is an inherited property; refer to parent class.

PHYDevice uint16 PHYDevice indicates the

particular PHY used on this

NIC.

0 No PHY detected

1 Intel 82553 (PHY 100) A or B step

2 Intel 82553 (PHY 100) C step

3 Intel 82503 10Mps

4 National DP83840A (10BaseT and

100Base-TX)

5 Seeq 80C240 - 100BASE-T4

6 Seeq 80C24 - 10Mps

7 Intel 82555 100Base-TX PHY

8 Microlinear 10Mps

9 Level One 10Mbps

10 National DP83840 100Base-TX, C

step

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

22

11 ICS 100Base-TX PHY

12 Gilad

13 Kinnereth

14 Kinnereth Plus

15 Other

16 Unknown

50 Intel 82562 EH Phoneline PLC

60 Intel 82562 ET 100 Base-TX PHY

70 Intel 82562 EM 100 Base-TX PHY

PortNumber uint16 PortNumber indicates the port

number on PCIe Quad port adapters

0 A

1 B

2 C

3 D

SlotID string SlotID field of the System Slot structure provides a mechanism to correlate

the physical attributes of the slot to its logical access method.

Speed uint64 This is an inherited property; refer to parent class.

StaticIPAddress string StaticIPAddress shows the static IP address if Static IP Address is configured,

else this is set to 0.0.0.0.

Status string This is an inherited property; refer to parent class.

StatusInfo uint16 This is an inherited property; refer to parent class.

SubnetMask string SubnetMask shows the current adapter’s subnet mask. This field is populated

only if the adapter has a static IP Address configured or else this is set to

0.0.0.0.

Unsupported Properties

The following properties are not supported: AlignmentErrors, AutoSense, CarrierSenseErrors,

DeferredTransmissions, ErrorCleared, ErrorDescription, ExcessiveCollisions, FCSErrors,

FlowControlPacketsReceived, FlowControlPacketsTransmitted, FrameTooLongs, FullDuplex,

GeneralReceiveErrors, GeneralTransmitErrors, IdentifyingDescriptions, InstallDate, InternalMACReceiveErrors,

InternalMACTransmitErrors, LastErrorCode, LateCollisions, MaxDataSize, MaxQuiesceTime,

MultipleCollisionFrames, OctetsReceived, OctetsTransmitted, OtherIdentifyingInfo,

PowerManagementCapabilities (this is exposed as a method), PowerManagementSupported (this is exposed

as a method), PowerOnHours, SingleCollisionFrames, SymbolErrors, TotalPacketsReceived,

TotalPacketsTransmitted, TotalPowerOnHours.

Modifiable Properties

There are no user modifiable properties of this class.

Supported Methods

Method Returns Parameters Detail

GetNDISVersion uint32 [OUT] uint32 dwMajorVersion

[OUT] uint32 dwMinorVersion

This method can be used to get the

NDIS version

GetPowerUsageOptions uint32 [OUT] uint32

AutoPowerSaveEnabled

[OUT] uint32

ReduceSpeedOnPowerDown

[OUT] uint32 SmartPowerDown

[OUT] uint32

SavePowerNowEnabled

Detects any optional power usage

settings (e.g., power usage for

standby, battery operation, etc.).

0 = Off

1 = On

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

23

[OUT] uint32

EnhancedASPMPowerSaver

[OUT] uint32 ACBSMode

[OUT] uint32

LinkSpeedBatterySaver

GetWakeOnLanPowerOptions uint32 [IN] uint32 WakeFromPoweroff

[IN] uint32 WakeOnLink

[IN] uint32 WakeOnMagicPacket

[IN] uint32

WakeOnDirectedPacket

GetWakeOnLanPowerOptions

returns WakeOnLan power settings.

For example, information about

wakeonlink, wakeonmagicpacket etc..

0 = Off

1 = On

If an adapter does not support this

feature, the returned structure will

be empty.

 IdentifyAdapter uint32 [IN] uint16 nSeconds Identifies adapter by flashing the

light on the adapter for a few

seconds. This method will only work

for physical adapters.

IsISCSIEnabled uint32 [OUT] uint32 iSCSIStatus This method can be used to check if

iSCSI is enabled on that adapter.

iSCSIStatus

0 – Unavailable

1 – Disabled

2 – Primary

3 - Secondary

 IsiSCSISupported uint32 [OUT] boolean bIsiSCSIOS

[OUT] boolean bIsISCSIPatch

[OUT] boolean bIsISCSIHotFix

This method can be used to check if

iSCSI is supported by the OS and

iSCSI patch and hot fix are installed.

The “hot fix” is also known as the

Microsoft iSCSI intitiator.

IsSetPowerMgmtCapabilitiesReq uint32 [OUT] boolean bIsSetRequired This method can be used to check if

SetPowerMgmt-Capabilities() needs

to be called.

SetPowerMgmtCapabilities uint32 This method is used to makes changes to the Power management

capabilities during NCS2 install so that any upgrade scenarios from earlier

releases will have the right options for all the WakeOnLAN options and

NCS2 will not have reinterpret them dynamically.

 SetPowerUsageOptions uint32 [IN] uint32

AutoPowerSaveModeEnabled

[IN] uint32

ReduceSpeedOnPowerDown

[IN] uint32 SmartPowerDown

[IN] uint32

SavePowerNowEnabled

[IN] uint32 EnchancedASPM-

PowerSaver

[IN] uint32 ACBSMode

[IN] uint32 LinkBatterySaver

Changes power usage options (e.g.,

method can be used to reduce power

usage for standby, battery

operation, etc.) Note: Power usage

settings are stored and used for

subsequent reboots.

0 = Off

1 = On

SetWakeOnLanPowerOptions uint32 [IN] uint32 WakeFromPoweroff

[IN] uint32 WakeOnLink

[IN] uint32 WakeOnMagicPacket

[IN] uint32 WakeOnDirected-

This method can be used to makes

changes to the WakeOnLan options.

For example, this method could be

used to set options like

wakefromPoweroff, wakeOnlink,

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

24

Packet WakeOn-MagicPacket, WakeOn-

DirectedPacket etc. Note WakeOnLan

settings are stored and used for

every boot.

0 = Off

1 = On

ValidateSettingOnNewTeam Internal use only.

Unsupported Methods

The following methods are not required for Intel PROSet and are, therefore, not supported:

EnableDevice, OnlineDevice, QuiesceDevice, Reset, RestoreProperties, SaveProperties, SetPowerState.

Associations

Association Class Association Partner

IANet_Device802dot1QVLANServiceImplementation IANet_802dot1QVLANService

IANet_DiagTestForMSE IANet_DiagTest

IANet_DiagResultForMSE IANet_DiagResult

IANet_DeviceBootServiceImplementation IANet_BootAgent

IANet_AdapterToSettingAssoc IANet_AdapterSetting

IANet_TeamedMemberAdapter IANet_TeamOfAdapters

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

25

Adapter Settings
All adapter settings are derived from a common base class.

IANet_Setting

Purpose

This is an abstract super class for a set of concrete classes of different types. This set of classes allows open

ended usage of a variable number of settings. These will be different between adapters, teams, or VLANs

and it may not always be possible to predict what parameters are required. Between the setting categories,

this class groups the most common parameters for inheritance.

IANet_AdapterSetting

Purpose

This abstract class is used to describe a settable property in a configuration. The class is derived from

IANet_Setting. Instances of this class will exist for each setting on each adapter. There are several sub-

classes for IANet_AdapterSetting. The sub-classes correspond to the different types and ranges of values

that settings can take. Each sub-class corresponds to a different style of GUI that may be used to display or

change the settings.

Supported Common Properties

Each of the five IANet_AdapterSetting-[String, Enum, Slider, MultiSelection, Int, MultiString] classes support a

similar set of properties. To reduce reproduction of the same information, the common properties are listed

here:

Name Type Description

Caption string This is an inherited property; refer to parent class.

CurrentValue sint64 Actual value of the parameter – tihs is the only attribute at the user can change.

CIM_Setting IANet_Setting
IANet_

AdapterSetting

IANet_AdapterSettingInt

IANet_AdapterSettingEnum

IANet_AdapterSettingSlider

IANet_AdapterSettingMultiString

IANet_AdapterSettingMultiSelection

IANet_AdapterSettingString

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

26

DefaultValue sint64 The initial value of the parameter.

Description string This is an inherited property; refer to parent class.

ExposeLevel uint32 This is an inherited property; refer to parent class.

Grouped boolean This is an inherited property; refer to parent class.

GroupId uint16 This is an inherited property; refer to parent class.

MiniHelp string This is an inherited property; refer to parent class.

ParentId string This is an inherited property; refer to parent class.

ParentType string This is an inherited property; refer to parent class.

Writable boolean This is an inherited property; refer to parent class.

Common Methods

No methods are supported by the IANet_AdapterSetting-[String, Enum, Slider, MultiSelection, Int, MultiString]

classes.

Associations

Association Class Association Partner

IANet_AdapterToSettingAssoc IANet_PhysicalEthernetAdapter

IANet_AdapterSettingInt

Purpose

The class models a setting that takes an integer value. There are several IANet setting classes used to model

integers. The differences between these classes concerns how the integer is displayed and modified by the

GUI, and how validation is done by the NCS2 WMI Provider. For IANet_AdapterSettingInt, it is expected that

the GUI will display an edit box with a spin control.

Instances

An instance of this class exists for each setting that should be displayed as an integer edit box. Users can

neither create or remove instances.

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

base uint64 Base is the root from which an integer value may take values.

max sint64 The maximum value the integer can take.

min sint64 The minimum value the integer can take.

Scale sint64 The unit of measurement to set or estimate series of marks or points at known intervals to measure

value of the parameter.

step sint64 Granularity of the integer value.

Unsupported Properties

SettingID and RequiresSession are not used.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

27

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. The user can modify this property

by using IWbemClassObject::Put() to change the value, then call “IWbemServices::PutInstance()” to update the

setting. The NCS2 WMI Provider will check that: CurrentValue <= max, CurrentValue >= min, (CurrentValue

– min) is a multiple of step.

Associations

Association Class Association Partner

IANet_AdapterToSettingAssoc IANet_PhysicalEthernetAdapter

IANet_AdapterSettingEnum

Purpose

The class models a enumeration setting value. For IANet_AdapterSettingEnum, it is expected that the GUI will

display a list of strings which map onto a small number of enumerated values. (e.g., a drop list combo box).

Instances

An instance of this class exists for each setting that will be displayed as an enumeration.

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

DescriptionMap [] string Contains what each value means

PossibleValues [] sint64 An array of possible values allowed for the enum.

Unsupported Properties

SettingID and RequiresSession are not used.

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using Put()

to change the value, then call “PutInstance()” to update the setting. The NCS2 WMI Provider will check that:

CurrentValue ∈ PossibleValues[]

Associations

Association Class Association Partner

IANet_AdapterToSettingAssoc IANet_PhysicalEthernetAdapter

IANet_AdapterSettingSlider

Purpose

The class models a setting that specifically handles Slider settings. For IANet_AdapterSettingSlider, it is

expected that the user interface will display a slider which will allow the user to choose the value in a

graphical manner – the actual value chosen need not be displayed.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

28

Instances

An instance of this class exists for each setting that will be displayed as a slider. Users can neither create or

remove instances.

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

FirstLabel string The label that should be displayed on the left side of the slider.

LastLabel string The label that should be displayed on the right side of the slider.

PossibleValues [] sint64 The initial value of the parameter.

Unsupported Properties

SettingID and RequiresSession are not used.

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using Put()

to change the value, then call “PutInstance()” to update the setting. The NCS2 WMI Provider will check that:

CurrentValue ∈ PossibleValues[]

Associations

Association Class Association Partner

IANet_AdapterToSettingAssoc IANet_PhysicalEthernetAdapter

IANet_AdapterSettingMultiString

Purpose

The class objectifies adapter related driver and network device settings; specifically, it handles multi-string

settings.

Instances

An instance of this class exists for each setting that will be as a list of string values. Users can neither create

or remove instances.

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

Maxlength uint32 The maximum length of the string.

Unsupported Properties

SettingID and RequiresSession are not used.

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using Put()

to change the value, then call “PutInstance()” to update the setting. The NCS2 WMI Provider will check that:

CurrentValue ∈ PossibleValues[]

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

29

Associations

Association Class Association Partner

IANet_AdapterToSettingAssoc IANet_PhysicalEthernetAdapter

IANet_AdapterSettingMultiSelection

Purpose

This class models a setting whereby the user can select several options from a list of options. For

IANet_AdapterSettingMultiSelection, it is expected that the GUI will display multi-selection list box which will

allow the user to choose any (or no) option(s).

Instances

An instance of this class exists for each setting that should be displayed as a list of options.

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

FirstLabel string The label that should be displayed on the left side of the slider.

LastLabel string The label that should be displayed on the right side of the slider.

PossibleValues [] sint64 The initial value of the parameter.

Unsupported Properties

SettingID and RequiresSession are not used.

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using Put()

to change the value, then use “PutInstance()” to update the setting. The NCS2 WMI Provider will check that:

CurrentValue ∈ PossibleValues[]

Associations

Association Class Association Partner

IANet_AdapterToSettingAssoc IANet_PhysicalEthernetAdapter

IANet_AdapterSettingString

Purpose

This class models a setting whereby the user can enter a free-form string value. For

IANet_AdapterSettingString, it is expected that the user interface will display an edit box.

Instances

An instance of this class exists for each setting that should be displayed as a string.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

30

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

MaxLength uint32 The maximum length of the string.

Unsupported Properties

SettingID and RequiresSession are not used.

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using Put()

to change the value, then call “PutInstance()” to update the setting.

Associations

Association Class Association Partner

IANet_AdapterToSettingAssoc IANet_PhysicalEthernetAdapter

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

31

Boot Agent Classes

IANet_BootAgent

Purpose

This class is used to capture information about the network boot capabilities of an adapter (e.g., settings for

the PXE Boot Agent supported by some Intel adapters).

Instances

An IANet_BootAgent instance exists for each adapter that supports boot agent capabilities, even if the boot

agent is not currently installed. Users can neither create or remove instances.

Supported Properties

Unsupported Properties

The following properties are not required by Intel PROSet and are, therefore, not supported:

Caption, Description, InstallDate, Started, StartMode, Status.

Name Type Description Values

FlashImageType uint32 Boot Agent Flash Image type. 0 PXE

1 PXE_EFI

3 EFI

4 DISABLED

5 BLANK

6 MISSING

7 iSCSI

255 Unknown

InstalledFlashImageTypes uint32 Boot Agent flash image types

that are currently installed in the

ROM.

1 PXE

2 EFI

4 ISCSI

255 Unknown

InvalidImageSignature boolean Will be set to true if the boot agent has a corrupted flash image.

iSCSI_Status uint32 Boot Agent iSCSI status. 0 iSCSI_PRIMARY

1 iSCSI_SECONDARY

2 iSCSI_DISABLED

255 Unknown

UpdateAvailable boolean Indicates if install or upgrade to boot agent software is available.

Version string String describing boot agent version.

VersionNumber uint32 Boot agent version in the format x.x.x

CIM_BootService IANet_BootAgent

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

32

Modifiable Properties

There are no user modifiable properties of this class.

Methods

There are two methods on this class that can be used to update the Flash ROM on the NIC:

Method Returns Parameters Detail

ProgramFlash uint32 [IN] uint32 Action

[IN] array of uint8 NewFlashData

[OUT] uint32 FlashRetCode

This method is used to update the Flash ROM on

the NIC. This will cause the NIC to stop

communicating with the network while the flash

is updated.

 ReadFlash uint32 [OUT] array of uint8 FlashData This method reads the Flash ROM on the NIC.

Unsupported Methods

StartService, StopService are not supported.

Associations

Association Class Association Partner

IANet_BootAgentToBootAgentSettingAssoc IANet_BootAgentSetting

IANet_DeviceBootServiceImplementation IANet_PhysicalEthernetAdapter

IANet_BootAgent_iSCSI_Adapters

Purpose

This class is used to capture information about iSCSI supported adapters installed in the system.

Instances

There will be one instance of each adapter which supports iSCSI boot. Users can neither create or remove

instances.

Supported Properties

Name Type Description Values

AdapterName string Friendly name of the adapter.

Caption This is an inherited property; refer to parent class.

iSCSI_Status uint32 The boot agent iSCSI status. 0 iSCSI_PRIMARY

1 iSCSI_SECONDARY

2 iSCSI_DISABLED

255 Unknown

Name This is an inherited property; refer to parent class.

CIM_BootService IANet_BootAgent_iSCSI_Adapters

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

33

Unsupported Properties

The following properties are not required by Intel PROSet and are, therefore, not supported:

Description, InstallDate, Started, StartMode, Status

Modifiable Properties

There are no user modifiable properties of this class.

Methods

There is one method of this class which can be used to set the iSCSI priority of adapters:

Method Returns Parameters Detail

SetiSCSI_Status uint32 [IN] uint32

iSCSI_State

[OUT] uint32 RetCode

This method will update the status of adapters that support

iSCSI Boot. The function only takes the primary and secondary

adapter IDs and sets them accordingly. The remaining

adapters are set to disabled.

iSCSI_State

0 – Set adapter to Primary

1 – Set adapter to Secondary

2 – Set adapter to Disabled

RetCode

0 – The state change was successful

1 – The state change failed

Unsupported Methods

StartService, StopService are not supported.

IANet_BootAgentSetting

Purpose

This abstract class is used to describe a settable property in a configuration. The class is derived from

IANet_Setting. Instances will exist for each Boot Agent setting. There are several sub-classes for

IANet_BootAgentSetting which correspond to the different types and ranges of values that settings can

take.

Supported Common Properties

Each of the IANet_BootAgentSetting-[String, Enum, Int] classes support a similar set of properties. To reduce

reproduction of the same information, the common properties are listed here:

CIM_Setting IANet_Setting IANet_BootAgentSetting

IANet_BootAgentSettingEnum

IANet_BootAgentSettingInt

IANet_BootAgentSettingString

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

34

Name Type Description

Caption string This is an inherited property; refer to parent class.

CurrentValue sint64 Actual value of the parameter – tihs is the only attribute at the user can change.

DefaultValue sint64 The initial value of the parameter.

Description string This is an inherited property; refer to parent class.

ExposeLevel uint32 This is an inherited property; refer to parent class.

Grouped boolean This is an inherited property; refer to parent class.

GroupId uint16 This is an inherited property; refer to parent class.

MiniHelp string This is an inherited property; refer to parent class.

ParentId string This is an inherited property; refer to parent class.

ParentType string This is an inherited property; refer to parent class.

Writable boolean This is an inherited property; refer to parent class.

Common Methods

No methods are supported by the IANet_BootAgentSetting-[String, Enum, Int] classes.

Associations

Association Class Association Partner

IANet_BootAgentToBootAgentSettingAssoc IANet_BootAgent

IANet_BootAgentSettingEnum

Purpose

The class models a enumeration setting value.

Instances

An instance of this class exists for each setting that will be displayed as an enumeration.

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

DescriptionMap [] string Contains what each value means.

PossibleValues [] sint64 An array of possible values allowed for the Enum.

Unsupported Properties

SettingID and RequiresSession are not used.

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using Put()

to change the value, then call “PutInstance()” to update the setting. The NCS2 WMI Provider will check that:

CurrentValue ∈ PossibleValues[]

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

35

Associations

Association Class Association Partner

IANet_BootAgentToBootAgentSettingAssoc IANet_BootAgent

IANet_BootAgentSettingInt

Purpose

This class objectifies Boot Agent related driver and network device settings. IANet_BootAgentSettingInt

specifically handles Integer settings.

Instances

An instance of this class exists for each setting that should be displayed as an integer edit box. Users can

neither create or remove instances.

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

base uint64 Base is the root from which an integer value may take values.

max sint64 The maximum value the integer can take.

min sint64 The minimum value the integer can take.

scale sint64 The unit of measurement to set or estimate series of marks or points at known intervals to

measure value of the parameter.

step sint64 Granularity of the integer value.

Unsupported Properties

SettingID and RequiresSession are not used.

Associations

Association Class Association Partner

IANet_BootAgentToBootAgentSettingAssoc IANet_BootAgent

IANet_BootAgentSettingString

Purpose

This class objectifies Boot Agent related driver and network device settings. IANet_BootAgentSettingString

specifically handles Integer settings

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

MaxLength uint32 The maximum length of the string.

Unsupported Properties

SettingID and RequiresSession are not used.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

36

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using Put()

to change the value, then call “PutInstance()” to update the setting.

Associations

Association Class Association Partner

IANet_BootAgentToBootAgentSettingAssoc IANet_BootAgent

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

37

Team Classes

IANet_LogicalEthernetAdapter

Purpose

This class objectifies the general network characteristics of an Intel ANS team portrayed as a logical device.

For every team instance there will be one instance of this class. This class implements CIM_EthernetAdapter

for a virtual team interface.

Supported Properties

Unsupported Properties

The following properties are not required by Intel PROSet and are, therefore, not supported:

AdditionalAvailability, AlignmentErrors, AutoSense, Availability, Capabilities, CapabilityDescriptions,

CarrierSenseErrors, DeferredTransmissions, EnabledCapabilities, ErrorCleared, ErrorDescription,

ExcessiveCollisions, FCSErrors, FrameTooLongs, FullDuplex, IdentifyingDescriptions, InstallDate,

InternalMACReceiveErrors, InternalMACTransmitErrors, LastErrorCode, LateCollisions, MaxDataSize,

MaxQuiesceTime, MaxSpeed, MultipleCollisionFrames, NetworkAddresses, OctetsReceived,

OctetsTransmitted, OtherIdentifyingInfo, PowerManagementCapabilities, PowerManagementSupported,

PowerOnHours, SingleCollisionFrames, SymbolErrors, TotalPacketsReceived, TotalPacketsTransmitted,

TotalPowerOnHours.

Associations

Association Class Association Partner

IANet_NetworkVirtualAdapter IANet_TeamOfAdapters

IANet_TeamToTeamSettingAssoc IANet_TeamSetting

Name Type Description

Caption string This is an inherited property; refer to parent class.

Description string This is an inherited property; refer to parent class.

DeviceID string This is an inherited property; refer to parent class.

MiniPortInstance string This is an inherited property; refer to parent class.

MiniPortName string This is an inherited property; refer to parent class.

Name string This is an inherited property; refer to parent class.

StatusInfo string This is an inherited property; refer to parent class.

CIM_EthernetAdapter IANet_EthernetAdapter IANet_LogicalEthernetAdapter

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

38

IANet_TeamOfAdapters

Purpose

This class has members that describe the type of the team, the number of adapters in the team, and the

maximum number of adapters that can be in the team.

Instances

There is an instance of this class for each Intel adapter team. To create an empty team, the user will create

an instance of IANet_TeamOfAdapters. The user must set the correct “TeamingMode” before calling

IWbemServices::PutInstance() to create the object. The NCS2 WMI Provider will return a string containing the

object path of the new object. Correspondingly, to remove a team the user should delete the instance of

IANet_TeamOfAdapters. The NCS2 WMI Provider will delete the associations to the team members, and will

also delete the virtual adapter and settings for the team.

Supported Properties

* Use Put() to change the value of the “TeamingMode” property, then call PutInstance() to update the team.

Name Type Description Values

AdapterCount uint32 The number of adapters currently in the team.

Caption string This is an inherited property; refer to parent class.

Description string This is an inherited property; refer to parent class.

LoadBalancedGroup boolean This is an inherited property; refer to parent class.

MaxAdapterCount uint32 The maximum number of adapters that can be placed in this team.

MFOEnabled boolean The MFO status in the current team.

Name string This is an inherited property; refer to parent class.

RedundancyStatus uint16 This is an inherited property; refer to parent class.

StaticIPAddress string The static IP address assigned to the team, otherwise this is 0.0.0.0

Status string This is an inherited property; refer to parent class.

SubnetMask string The subnet mask assigned to the team, otherwise this is 0.0.0.0

TeamingMode * uint32 The type of the

current team.

0 AFT

1 ALB

2 SLA

4 IEEE 802.3ad

5 SFT

15 Detect Mode

255 Unknown

TeamMACAddress string The configured MAC address of this team.

TeamPrefix []

uint16

This property is deprecated and is not in use.

CIM_ExtraCapacityGroup IANet_TeamOfAdapters

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

39

Unsupported Properties

The following properties are not supported : InstallDate and Status.

Supported Methods

Method Returns Parameters Detail

TestSwitchConfiguration uint32 [out] uint16 [] CauseMessageId

[out] string [] strCause

[out] uint16 [] SolutionMessageId

[out]string [] strSolution

Tests the switch configuration to ensure

that the team is functioning correctly with

the switch. This test can be used to check

that link partners i.e., a device that an

adapter links to, such as another adapter,

hub, switch, etc., support the chosen

adapter teaming mode. For example, if the

adapter is a member of a Link Aggregration

team, then this test can verify that link

partners connected to the adapter support

Link Aggregation

RenameTeam uint32 [IN] string TeamName Changes the name of an existing Intel team

in the system.

ValidateAddAdapters uint32 [in] [] ref:

IANet_PhysicalEthernetAdapter

Adapters

[out] uint16 ValResult

Validates the adapters which will be added

to this team.

ValidateSetting uint32 [in] ref:

IANet_PhysicalEthernetAdapter

Adapter

[in] string SettingName

[in] sint64 Value

[out] uint16 ValResult

Validates the member adapter setting.

Modifiable Properties

There are no user modifiable properties of this class.

Associations

Association Class Association Partner

IANet_VirtualNetworkAdapter IANet_LogicalEthernetAdapter

IANet_TeamedMemberAdapter IANet_PhysicalEthernetAdapter

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

40

Team Settings

All team settings have a common base class and inheritance hierarchy.

IANet_TeamSetting

Purpose

This abstract class is used to describe a settable property in a configuration. The class is derived from

IANet_Setting.

Instances

Instances of this class will exist for each setting on each Team. There are several sub-classes for

IANet_TeamSetting. The sub-classes correspond to the different types and ranges of values that settings can

take. Each sub-class corresponds to a different style of GUI that may be used to display or change the

settings.

Supported Common Properties

Each of the five IANet_TeamSetting-[String, Enum, Slider, MultiSelection, Int] classes support a similiar set of

properties. To reduce reproduction of the same information, the common properties are listed here:

Name Type Description

Caption string This is an inherited property; refer to parent class.

CurrentValue sint64 Actual value of the parameter – this is the only attribute at the user can change.

DefaultValue sint64 The initial value of the parameter.

Description string This is an inherited property; refer to parent class.

ExposeLevel uint32 This is an inherited property; refer to parent class.

CIM_Setting IANet_Setting
IANet_

TeamSetting

IANet_TeamSettingInt

IANet_TeamSettingEnum

IANet_TeamSettingSlider

IANet_TeamSettingString

IANet_TeamSettingMultiSelection

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

41

Grouped boolean This is an inherited property; refer to parent class.

GroupId uint16 This is an inherited property; refer to parent class.

MiniHelp string This is an inherited property; refer to parent class.

ParentId string This is an inherited property; refer to parent class.

ParentType string This is an inherited property; refer to parent class.

Writable boolean This is an inherited property; refer to parent class.

Methods

No methods are supported by the IANet_TeamSetting-[String, Enum, Slider, MultiSelection, Int] classes.

Associations

Association Class Association Partner

IANet_TeamToTeamSettingAssoc IANet_LogicalEthernetAdapter

IANet_TeamSettingInt

Purpose

The class models a setting that takes an integer value. There are several IANet setting classes used to model

integers. The differences between these classes concerns how the integer is displayed and modified by the

GUI, and how validation is done by the NCS2 WMI Provider. For IANet_TeamSettingInt, it is expected that the

GUI will display an edit box with a spin control.

Instances

An instance of this class exists for each setting that should be displayed as an integer edit box.

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

base uint64 Base is the root from which an integer value may take values.

max sint64 The maximum value the integer can take.

min sint64 The minimum value the integer can take.

Scale sint64 The unit of measurement to set or estimate series of marks or points at known intervals to measure

value of the parameter.

step sint64 Granularity of the integer value.

Unsupported Properties

SettingID and RequiresSession are not used.

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. The user can modify this property

by using IWbemClassObject::Put() to change the value, then call “IWbemServices::PutInstance()” to update the

setting. The NCS2 WMI Provider will check that: CurrentValue <= max, CurrentValue >= min, (CurrentValue

– min) is a multiple of step where max, min, CurrentValue and step are all properties of IANet_TeamSettingInt.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

42

IANet_TeamSettingEnum

Purpose

The class models an enumeration setting value. For IANet_TeamSettingEnum, it is expected that the GUI will

display a list of strings which map onto a small number of enumerated values. (e.g., a drop list combo box).

Instances

An instance of this class exists for each setting that will be displayed as an enumeration.

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

DescriptionMap [] string Contains what each value means

PossibleValues [] sint64 An array of possible values allowed for the Enum.

Unsupported Properties

SettingID and RequiresSession are not used.

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using Put()

to change the value, then call “PutInstance()” to update the setting. The NCS2 WMI Provider will check that:

CurrentValue ∈ PossibleValues[]

IANet_TeamSettingSlider

Purpose

The class models a setting that specifically handles Slider settings. For IANet_AdapterSettingSlider, it is

expected that the GUI will display a slider which will allow the user to choose the value in a graphical manner

– the actual value chosen need not be displayed.

Instances

An instance of this class exists for each setting that will be displayed as a slider. Users can neither create or

remove instances.

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

FirstLabel string The label that should be displayed on the left side of the slider.

LastLabel string The label that should be displayed on the right side of the slider.

PossibleValues [] sint64 The initial value of the parameter.

Unsupported Properties

SettingID and RequiresSession are not used.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

43

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using Put()

to change the value, then call “PutInstance()” to update the setting. The NCS2 WMI Provider will check that:

urrentValue ∈ PossibleValues[]

IANet_TeamSettingMultiSelection

Purpose

This class models a setting whereby the user can select several options from a list of options. For

IANet_AdapterSettingMultiSelection, it is expected that the GUI will display multi-selection list box which will

allow the user to choose any (or no) option(s).

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

FirstLabel string The label that should be displayed on the left side of the slider.

LastLabel string The label that should be displayed on the right side of the slider.

PossibleValues [] sint64 The initial value of the parameter.

Unsupported Properties

SettingID and RequiresSession are not used.

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using Put()

to change the value, then use “PutInstance()” to update the setting. The NCS2 WMI Provider will check that:

CurrentValue ∈ PossibleValues[]

IANet_TeamSettingString

Purpose

This class models a setting whereby the user can enter a free-form string value. For

IANet_AdapterSettingString, it is expected that the GUI will display an edit box.

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

MaxLength uint32 The maximum length of the string.

Unsupported Properties

SettingID and RequiresSession are not used.

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using Put()

to change the value, then call “PutInstance()” to update the setting.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

44

VLAN Classes

IANet_802dot1QVLANService

Purpose

This class is used to hold the IEEE 802.1Q properties of a network adapter. This class implements the CIM

class CIM_802dot1QVLANService.

Instances

An instance of this class exists for each adapter or team that supports IEEE 802.1Q. Each adapter or team

can have just one IANet_802dot1QVLANService. Some teams, such as multi-vendor fault tolerant teams do

not support this service. The user cannot create instances of this class If the adapter does not have an

instance associated with it, then the adapter does not support this service. The user cannot delete instances

of this class.

Modifiable Properties

There are no modifiable properties of this class.

Methods

Method Returns Parameters Detail

CreateVLAN uint16 [in] uint32 VLANNumber

[in] string Name

[out] ref:IANet_VLAN

Used to create a VLAN on the adapter or team.

The client must supply the VLAN number and

the VLAN name, and will get the object path of

the newly created VLAN.

Associations

Association Class Association Partner

IANet_802dot1QVLANService IANet_Device802dot1QVLANServiceImplementation

CIM_802dot1QVLANService IANet_802dot1QVLANService

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

45

IANet_VLAN

Purpose

This class holds the information for each Intel VLAN. This class implements CIM_VLAN.

Instances

An instance of this class will exist of each Intel VLAN. To create a VLAN, call CreateVLAN from the

appropriate instance of IANet_802dot1QVLANService.The user can remove an instance of this class to

remove the corresponding VLAN.

Modifiable Properties

The user is able to modify the VLANNumber and Caption attribute.

Supported Properties

Name Type Description Values

Caption string This is an inherited property; refer to parent class.

Description string This is an inherited property; refer to parent class.

Name string This is an inherited property; refer to parent class.

ParentID uint16 Contains the VLAN’s parent device ID.

ParentType uint16 Contains the VLAN’s parent

device type.

0 Adapter

1 Team

2 Unknown

StaticIPAddress string This field has a value if the VLAN is configured to have a static IP address.

Otherwise, it will be set to 0.0.0.0

StatusInfo uint16 This is an inherited property; refer to parent class.

SubnetMask string This field has a value if the VLAN is configured to have a subnet mask. Otherwise,

it will be set to 0.0.0.0

VLANName string This is the name of the VLAN chosen by the user.

VLANNumber uint32 This is the VLAN’s identifying number.

Unsupported Properties

Description, Install Date, StartMode, and Status are not used.

Associations

Association Class Association Partner

IANet_VLANToVLANSettingAssoc IANet_VLANSetting

CIM_VLAN IANet_VLAN

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

46

IANet_VLANSetting

Purpose

This abstract class is used to describe a settable property in a configuration. The class is derived from

IANet_Setting. Instances of this class will exist for each setting on each adapter. There are several sub-

classes for IANet_VLANSetting. The sub-classes correspond to the different types and ranges of values that

settings can take. Each sub-class corresponds to a different style of GUI that may be used to display or

change the settings.

Supported Common Properties

Each of the five IANet_VLANSetting-[String, Enum, Slider, MultiSelection, Int] classes support a similiar set of

properties. To reduce reproduction of the same information, the common properties are listed here:

Name Type Description

Caption string This is an inherited property; refer to parent class.

CurrentValue sint64 Actual value of the parameter – this is the only attribute at the user can change.

DefaultValue sint64 The initial value of the parameter.

Description string This is an inherited property; refer to parent class.

ExposeLevel uint32 This is an inherited property; refer to parent class.

Grouped boolean This is an inherited property; refer to parent class.

GroupId uint16 This is an inherited property; refer to parent class.

MiniHelp string This is an inherited property; refer to parent class.

ParentId string This is an inherited property; refer to parent class.

ParentType string This is an inherited property; refer to parent class.

Writable boolean This is an inherited property; refer to parent class.

Common Methods

No methods are supported by the IANet_VLANSetting-[String, Enum, Slider, MultiSelection, Int] classes.

IANet_VLANSettingInt

Purpose

The class models a setting that takes an integer value. There are several IANet setting classes used to model

integers. The differences between these classes concerns how the integer is displayed and modified by the

GUI, and how validation is done by the NCS2 WMI Provider. For IANet_AdapterSettingInt, it is expected that

the GUI will display an edit box with a spin control.

Instances

An instance of this class exists for each setting that should be displayed as an integer edit box. Users can

neither create or remove instances.

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

base uint64 Base is the root from which an integer value may take values.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

47

max sint64 The maximum value the integer can take.

min sint64 The minimum value the integer can take.

Scale sint64 The unit of measurement to set or estimate series of marks or points at known intervals to measure

value of the parameter.

step sint64 Granularity of the integer value.

Unsupported Properties

SettingID and RequiresSession are not used.

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. The user can modify this property

by using IWbemClassObject::Put() to change the value, then call “IWbemServices::PutInstance()” to update the

setting. The NCS2 WMI Provider will check that: CurrentValue <= max, CurrentValue >= min, (CurrentValue

– min) is a multiple of step

IANet_VLANSettingEnum

Purpose

The class models a enumeration setting value. For IANet_AdapterSettingEnum, it is expected that the GUI will

display a list of strings which map onto a small number of enumerated values. (e.g., a drop list combo box).

Instances

An instance of this class exists for each setting that will be displayed as an enumeration.

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

DescriptionMap [] string Contains what each value means.

PossibleValues [] sint64 An array of possible values allowed for the Enum.

Unsupported Properties

SettingID and RequiresSession are not used.

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using Put()

to change the value, then call “PutInstance()” to update the setting. The NCS2 WMI Provider will check that:

CurrentValue ∈ PossibleValues[]

IANet_VLANSettingSlider

Purpose

The class models a setting that specifically handles Slider settings. For IANet_AdapterSettingSlider, it is

expected that the GUI will display a slider which will allow the user to choose the value in a graphical manner

– the actual value chosen need not be displayed.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

48

Instances

An instance of this class exists for each setting that will be displayed as a slider. Users can neither create or

remove instances.

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

FirstLabel string The label that should be displayed on the left side of the slider.

LastLabel string The label that should be displayed on the right side of the slider.

PossibleValues [] sint64 The initial value of the parameter.

Unsupported Properties

SettingID and RequiresSession are not used.

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using Put()

to change the value, then call “PutInstance()” to update the setting. The NCS2 WMI Provider will check that:

urrentValue ∈ PossibleValues[]

IANet_VLANSettingMultiSelection

Purpose

This class models a setting whereby the user can select several options from a list of options. For

IANet_AdapterSettingMultiSelection, it is expected that the GUI will display multi-selection list box which will

allow the user to choose any (or no) option(s).

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

FirstLabel string The label that should be displayed on the left side of the slider.

LastLabel string The label that should be displayed on the right side of the slider.

PossibleValues [] sint64 The initial value of the parameter.

Unsupported Properties

SettingID and RequiresSession are not used.

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using Put()

to change the value, then use “PutInstance()” to update the setting. The NCS2 WMI Provider will check that:

CurrentValue ∈ PossibleValues[]

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

49

IANet_VLANSettingString

Purpose

This class models a setting whereby the user can enter a free-form string value. For

IANet_VLANSettingString, it is expected that the GUI will display an edit box.

Supported Properties

This class supports the following properties in addition to those listed above.

Name Type Description

MaxLength uint32 The maximum length of the string

Unsupported Properties

SettingID and RequiresSession are not used.

Modifiable Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using Put()

to change the value, then call “PutInstance()” to update the setting.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

50

Diagnostic Classes

IANet_DiagTest

Purpose

IANet_DiagTest is sub classed from CIM_DiagnosticTest. The class provides a generic vehicle to run and

control Diagnostic tests for an Intel® PROSet for Windows Device Manager supported ethernet adapter. The

super class, CIM_DiagnosticTest, is designed to generically support the testing of any computer hardware on

a CIM enabled system. Properties of the class are descriptive in nature and the mechanics of the testing are

provided by the exposed methods.

Instances

There is a one to one relationship between available diagnostic tests and instances of this class. Each test is

distinguished by a Key, which is the concatenation of a diagnostic ID number, the “@” symbol, and the GUID of

the referenced adapter (e.g. 1@{12345678-9ABC-DEF0-1234-123456789012}). This key value is, in one

sense, redundant information, as all information to reference an adapter and test is passed as object

parameters to the RunTest and other methods. Still, the instance must be consistent with parameters to the

method or the NCS2 WMI Providers will reject the command. Other properties provide other description and

run time information. The user cannot create or delete instances of this class.

The following table contains the diagnostic IDs which comprise the “<ID>@” part of the string. You can select

which test to run on an adapter by choosing an ID from the table below and pairing it with the GUID of an

adapter.

Diagnostic ID Test Type

1 EEPROM

2 FIFO

3 REGISTER

4 INTERRUPT

17 LOOPBACK

32 LINK & DUPLEX

33 LINK & DUPLEX OFFLINE

34 CABLE

35 CABLE OFFLINE

36 PING

Supported Properties

Name Type Description Values

Caption string This is an inherited property; refer to parent class.

Characteristics [] uint16 This is an inherited property; refer to parent class.

Description string This is an inherited property; refer to parent class.

Grouped boolean Some of the tests are grouped under specific categories. Grouped is true if this

CIM_DiagnosticTest IANet_DiagTest

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

51

is the case.

GroupId uint16 Some of the tests are grouped under specific categories. This parameter

specifies the ID of the group under which this test belongs.

Name string This is an inherited property; refer to parent class.

ResourcesUsed [] uint16 This is an inherited property; refer to parent class.

Started boolean This is an inherited property; refer to parent class.

StartMode string This is an inherited property; refer to parent class.

Status string This is an inherited property; refer to parent class.

TestId uint16 The test ID of the diagnostic test.

Unsupported Properties

Caption, Description, InstallDate, OtherCharacteristicDescription

Modifiable Properties

There are no user-modifiable properties for this class.

Methods

Method Returns Parameters Detail

RunTest uint32 [IN] ref :

CIM_ManagedSystemElement

SystemElement

[IN] ref :

CIM_DiagnosticSetting

Setting

[OUT] ref :

CIM_DiagnosticResult

Result

Runs a test as defined by three parameters

referencing:

SystemElement

defines the adapter, which we are to run the test

on by referring to an instance of SystemElement,

which will always be the subclass

IANet_EthernetAdapter.

Setting

defines the test to be run, and the manner in

which it is run by referring to an instance of

CIM_DiagnosticSetting, which will always be the

subclass IANet_DiagSetting.

Result

defines an instance of the class

CIM_DiagnosticResult, which will always be the

class IANet_DiagResult.

DiscontinueTest [IN] ref :

CIM_ManagedSystemElement

SystemElement

[IN] ref :

CIM_DiagnosticResult

Result

[OUT] Boolean TestingStopped

Attempts to stop a diagnostic test in progress as

defined by two parameters referencing

SystemElement and Result. These parameters

function the same as RunTest. A third parameter

TestingStopped returns a BOOLEAN value, which

indicates if the command was successful in

stopping the test.

ClearResults [IN] ref :

CIM_ManagedSystemElement

SystemElement

[OUT] [] String

The referenced parameter

ManagedSystemElement, combined with this

object’s object path combine to reference

instances of DiagnosticResultForMSE, which will

be deleted. Also, all references of

DiagnosticResult objects referenced by

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

52

ResultsNotCleared

DiagnosticResultForMSE will be deleted. Also, all

instances of Diagnostic-ResultForTest, which

refer to the deleted DiagnosticResult objects, will

be deleted. Finally, the string array Output

parameter ResultsNotCleared will list the keys of

the DiagnosticResults, which could not be cleared.

Unsupported Methods

StartService and StopService are not supported.

Associations

Association Class Association Partner

IANet_DiagTestForTest IANet_DiagResult

IANet_DiagSettingForTest IANet_DiagSetting

IANet_DiagTestForMSE IANet_PhysicalEthernetAdapter

IANet_DiagResult

Purpose

Instances of IANet_DiagResult display result data for a particular test run on a particular Adapter. Instances

of this class correspond identically to instances of IANet_DiagTest and IANet_DiagSetting.

Associations

Association Class Association Partner

IANet_DiagResultForTest IANet_DiagTest

IANet_DiagResultForMSE IANet_PhysicalEthernetAdapter

Instances

Instances of IANet_DiagResult correspond to results of a particular test run on a specific adapter. The format

for the key is the same as IANet_DiagTest and IANet_DiagSetting. The instance is able to store any arbitrary

test results as any data, which does not fit the defined properties, can be placed into the TestResults array

property. Any time a new test is run on an adapter, the new instance overwrites the existing instance of test

results corresponding to that adapter and test combination. The user cannot create instances or delete

instances of this class. There will be one instance for each adapter and test combination.

Modifiable Properties

The user cannot modify instances of this class.

Supported Properties

Name Type Description Values

Caption string This is an inherited property; refer to parent class.

Characteristics [] uint16 This is an inherited property; refer to parent class.

Description string This is an inherited property; refer to parent class.

CIM_DiagnosticResult IANet_DiagResult

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

53

Grouped boolean Some of the tests are grouped under specific categories. Grouped is true if this is the

case.

GroupId uint16 Some of the tests are grouped under specific categories. This parameter specifies the

ID of the group under which this test belongs.

Name string This is an inherited property; refer to parent class.

ResourcesUsed [] uint16 This is an inherited property; refer to parent class.

Started boolean This is an inherited property; refer to parent class.

StartMode string This is an inherited property; refer to parent class.

Status string This is an inherited property; refer to parent class.

TestId uint16 The test ID of the diagnostic test.

Unsupported Properties

The following properties are not supported by NCS2:

EstimatedTimeOfPerforming OtherStateDescription, HaltOnError, ReportSoftErrors, and TestWarningLevel.

IANet_DiagSetting

Purpose

Instances of IANet_DiagSetting provide specific run time diagnostic test directives. Directives used are in

common to all tests and are bound to the superclass CIM_DiagnosticSetting. These include properties such as

ReportSoftErrors and HaltOnError. There are no additional properties added to the subclass

IANet_DiagSetting.

Associations

Association Class Association Partner

IANet_DiagSettingForTest IANet_DiagTest

Instances

The user cannot create instances or delete instances of this class. There will be one instance for each adapter

and test combination.

Modifiable properties

UpdateInstanceAsync is implemented and can be used to set test parameters to HaltOnError,

ReportSoftErrors, ReportStatusMessages, QuickMode, TestWarningLevel, and PercentOfTestCoverage.

Supported Properties

Name Type Description

SettingID string This is an inherited property; refer to parent class.

Unsupported properties

The following properties are not supported : Caption, Description.

CIM_DiagnosticSetting IANet_DiagSetting

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

54

Association Classes

IANet_TeamedMemberAdapter

Purpose

This class is used to associate the adapter with the team, determine the function of the adapter in the team,

and establish that the adapter is currently active in the team. This class implements the CIM class

CIM_NetworkAdapterRedundancyComponent. An instance of this class exists for each adapter that is a

member of a team. To add an adapter to a team, create an instance of IANet_TeamedMemberAdapter to

associate the adapter with the team. To remove an adapter from the team, remove the instance of IANet_

TeamedMemberAdapter. The adapter will no longer be part of the team and may be bound to an IP protocol

endpoint after the Apply() function is called. There are no supported methods in this class.

Instances

The user cannot create instances or delete instances of this class. There will be one instance for each adapter

bound to a team.

Supported Properties

Unsupported Properties

The following properties are not supported : PrimaryAdapter and ScopeOfBalancing.

IANet_TeamedMemberAdapter

IANet_TeamOfAdapters

IANet_PhysicalEthernetAdapter

Name Type Description Values

AdapterFunction uint32 Describes how the adapter is used in the team. The

AdapterFunction property of this class may be modified to

describe how the adapter is used.

0 Unknown

1 Primary Adapter

2 Secondary Adapter

3 Other

AdapterStatus uint32 Describes the adapter’s status within the team. 0 Unknown

1 Active

2 Standby

3 InActive

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

55

IANet_AdapterToSettingAssoc

Purpose

This class associates Intel network cards with their respective settings.

IANet_BootAgentToBootAgentSettingAssoc

Purpose

This class is used to group a collection of IANet_BootAgentSetting instances.

IANet_Device802dot1QVLANServiceImplementation

Purpose

This class is used to group a collection of IANet_Device802dot1QVLANServiceImplementation instances. This

is a service class through which users can initiate VLAN addition or removal.

Instances

There will be once instance of this class for every adapter or team present. The user cannot create instances or

delete instances of this class.

IANet_AdapterToSettingAssoc

IANet_PhysicalEthernetAdapter

IANet_AdapterSetting

IANet_BootAgentToBootAgentSettignAssoc

IANet_BootAgent

IANet_BootAgentSetting

IANet_Device802dot1QVLANServiceImplementation

IANet_EthernetAdapter

IANet_802dot1QVLANService

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

56

IANet_DeviceBootServiceImplementation

Purpose

This class is used to group a collection of IANet_Device802dot1QVLANServiceImplementation instances.

Instances

There will be once instance of this class for every adapter. The user cannot create instances or delete instances

of this class.

IANet_DiagResultForMSE

Purpose

This class relates diagnostic test results to the ManagedSystemElement that was tested.

Instances

There will be one instance of this class for every diagnostic result. Diagnostic tests must be executed before

instances of this class will exist.

IANet_DiagResultForTest

Purpose

This class is an implementation of the DiagnosticResultForTest class.

Instances

There will be one instance of this class for every diagnostic result. Diagnostic tests must be executed before

instances of this class will exist.

IANet_DeviceBootServiceImplementation

IANet_PhysicalEthernetAdapter

IANet_BootAgent

IANet_DiagResultForMSE

CIM_DiagnosticResult

CIM_ManagedSystemElement

IANet_DiagResultForTest

IANet_DiagResult

IANet_DiagTest

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

57

IANet_DiagSettingForTest

Purpose

This class is an implementation of the DiagnosticSettingForTest class.

Instances

There will be one instance of this class for every diagnostic test.

IANet_DiagTestForMSE

Purpose

This class is an implementation of the DiagnosticTestForMSE class.

Instances

There will be one instance of this class for every diagnostic test.

Unsupported Properties

The following properties are not supported : EstimatedTimeOFPerforming

IANet_TeamToTeamSettingAssoc

Purpose

This class associates teams with their respective settings.

Instances

There will be one instance of this class for every team setting.

IANet_DiagSettingForTest

IANet_DiagSetting

IANet_DiagTest

IANet_DiagTestForMSE

IANet_DiagTest

IANet_PhysicalEthernetAdapter

IANet_TeamToTeamSettingAssoc

IANet_LogicalEthernetAdapter

IANet_TeamSetting

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

58

IANet_VLANFor

Purpose

This class is used by the IANet_802dot1QVLANService.

Instances

There will be one instance of this class for every VLAN.

IANet_VLANToVLANSettingAssoc

Purpose

This class associates VLANs with their respective settings.

Instances

There will be one instance of this class for every VLAN.

IANet_VLANFor

CIM_VLAN

CIM_VLANService

IANet_VLANToVLANSettingAssoc

IANet_VLAN

IANet_VLANSetting

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

59

CIMv2 Class Definitions
Intel PROSet for Windows Device Manager adds some classes to the root\CIMv2 namespace. In some cases,

these classes are duplicates of similar named classes in the root\IntelNCS2 namespace. There are also some

classes which might maintain the same name but vary in functionality. The information below captures the

differences between the root\IntelNCS2 definition of the class and the root\CIMv2 definition.

IANet_DiagSetting
This class is the same as the definition for it in the root\IntelNCS2 namespace.

IANet_DiagSettingForTest
This class is the same as the definition for it in the root\IntelNCS2 namespace.

IANet_EthernetAdapter
This class is present in the root\CIMv2 namespace is inherited by the IANet_PhysicalEthernetAdapter class.

Since this class defines properties needed by its descendants, its use has been carried over to this

namespace. The class definition in this namespace is no different than the root\IntelNCS2 definition; please

refer to that section of the document for class detail.

IANet_PhysicalEthernetAdapter
Since the IANet_PhysicalEthernetAdapter class installs into the root\CIMv2 namespace, additional parent

class properties will be present which are not shown in the same class for the root\IntelNCS2 namespace.

The reason different properties appear is due to different CIM specifications being used.

Additional Unsupported Properties

These additional properties are defined by Microsoft based on the CIM version 2.5 schema and are not

supported by instances of IANet_PhysicalEthernetAdapter: ConfigManagerErrorCode,

ConfigManagerUserConfig, PnPDeviceID.

Associations

IANet_PhysicalEthernetAdapter has fewer associations in this namespace:

Association Class Association Partner

IANet_DiagTestForMSE IANet_DiagTest

IANet_DiagResultForMSE IANet_DiagResult

IANet_DiagTest
The following properties are present for this class in the root\IntelNCS2 namespace but are missing in the

root\CIMv2 namespace: Grouped, GroupId. Also, the .VendorID property is present and used in the root\CIMv2

namespace (it will evaluate to “Intel Corp.”).

IANet_DiagResult
The following properties are present for this class in the root\IntelNCS2 namespace but are missing in the

root\CIMv2 namespace: ConnectionTest_DHCPServerAddresses, ConnectionTest_DNSAddresses,

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

60

ConnectionTest_GatewayAddresses, ConnectionTest_NetworkAddresses, ConnectionTest_WINSAddresses,

TestResultsIds, TestResultsAttr.

IANet_DiagResultForMSE
This class is the same as the definition for it in the root\IntelNCS2 namespace.

IANet_DiagResultForTest
This class is the same as the definition for it in the root\IntelNCS2 namespace.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

61

Appendix
This section contains specific information to help users working with the NCS2 architecture.

Related Documents
CIM schema version 2.0, 2.2 published by Distributed Management Task Force (DMTF), http://www.dmtf.org.

Microsoft Windows Management Instrumentation (and other manageability information)

http://www.microsoft.com/hwdev/WMI/.

Web-based Enterprise Management (WBEM) initiative by DMTF http://www.dmtf.org/wbem/index.html.

Terminology
Term Explanation

ANS Advanced Networking Services (ANS) teaming is a feature of the Intel® Advanced Networking

Services component that lets you group multiple adapters in a system into a team.

API An Application Programming Interface exposed by a library or system for service requests.

CIM Common Information Model; a standard for describing computers and services.

CIMOM CIM Object Manager; part of Windows Management.

COM Component Object Model; a Microsoft platform for inter-process communication and object creation.

DMTF Distributed Management Task Force; a standards organization for the IT industry.

GUI Graphical User Interface; refers to the user interface layer.

MOF Managed Object Format; a file extension of a special file format used in Windows management.

NCS2 Network Configuration Services 2.0 - the architecture used in Intel® PROSet for Windows Device

Manager

VLAN Virtual LAN; a method for creating logical networks within a physical network.

WBEM Web Based Enterprise Management; technologies to unify distributed computing environments.

WMI Windows Management Instrumentation; Microsoft’s implementation of the CIM standard for

Windows.

Working Examples

Getting the Current Configuration

The client does not need to get a client handle to read the current configuration. Clients can use a NULL

context, however, any error messages will be returned in the default language for the managed machine. In

the following tables, items enclosed in { } are object paths. These paths are assumed to have been obtained

from previous WQL queries. The client should never need to construct an object path without doing a query.

The __PATH attribute of every object contains the object path for that object. In all the following use cases,

the methods IWbemServices::ExecQuery or IWbemServices::ExecQueryAsync are used to execute WQL

queries.

Getting the Physical Adapters

The main class for adapters is IANet_PhysicalEthernetAdapter. This class is used for both physical and virtual

adapters, and the client needs to know how to distinguish between them.

Task WQL Query Result Class Comment

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

62

Enumerate

all adapters

SELECT * FROM

IANet_EthernetAdapter

IANet_EthernetAdapter Returns all IANet_EthernetAdapters. This is

equivalent to

IWbemServices::CreateInstanceEnumAsync.

Determine

if adapter

is virtual

ASSOCIATORS OF {adapter

path} WHERE AssocClass =

IANet_NetworkVirtualAda

pter

IANet_TeamOfAdapters If the query results in no classes then the

adapter is a real adapter.

Getting the Team Configuration

The main classes in the teaming schema are IANet_LogicalEthernetAdapter, IANet_TeamOfAdapters,

IANet_NetworkVirtualAdapter and IANet_TeamedMemberAdapter in the root\IntelNCS2 namespace. The

association class IANet_NetworkVirtualAdapter contains no useful data – clients are really only interested in

the endpoints of this association. IANet_TeamedMemberAdapter does contain useful data about how the

member adapter is used within the team.

Task WQL Queries Result Class Comments

Enumerate

all teams

SELECT * FROM

IANet_TeamOfAdapters

IANet_TeamOfAdapters There is one instance of

IANet_TeamOfAdapters for each

team. This is equivalent to

IWbemServices::CreateInstanceEnu

mAsync.

Get the

virtual

adapter for

a team

ASSOCIATORS OF

{IANet_TeamOfAdapters path}

WHERE AssocClass =

IANet_NetworkVirtualAdapter

IANet_LogicalEthernetAdapter Returns only the adapter object for

the virtual adapter in the team. This

adapter will not exist if the team

has been created but Apply has not

been called. (see below on updating

the configuration).

Enumerate

the team’s

member

adapters

ASSOCIATORS OF

{IANet_TeamOfAdapters path}

WHERE AssocClass =

IANet_TeamedMemberAdapte

r

IANet_PhysicalEthernetAdapter Returns the adapters which are in

the team, but does not describe

what role the adapter plays.

Determine

an adapter’s

role in a

team

REFERENCES OF

{IANet_PhysicalEthernetAdapt

er path} WHERE ResultClass =

IANet_TeamedMemberAdapte

r

IANet_TeamedMemberAdapter The class contains information

about how the member adapter

relates to the team and its current

status within the team.

Getting the VLAN configuration

Any adapter or team supporting VLANs has an IANet_802dot1QVLANService associated with it, using the

association class IANet_Device802do1QVVLANServiceImplementation. If an adapter or team does not have

an instance of this class associated with it, then it does not support VLANs. Each VLAN is represented by an

instance of IANet_VLAN in the root\IntelNCS2 namespace. IANet_VLAN does not have a direct association – it

is associated with the corresponding IANet_802dot1QVLANService for the adapter or team. The association

class IANet_VLANFor is used to associate each VLAN instance with the correct ANet_802dot1QVLANService.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

63

Task WQL Queries Result Class Comments

Get the 802.1q VLAN

service object

associated with an

adapter

ASSOCIATORS OF

{IANet_EthernetAdapter path}

WHERE ResultClass =

IANet_802dot1QVLANService

IANet_802dot1QVLANService

Returns one or

no object(s).

Get the VLANs on an

adapter

ASSOCIATORS OF

{IANet_802dot1QVLANService

path} WHERE ResultClass =

IANet_VLAN

IANet_VLAN This can return

no objects if

there are no

VLANs

installed.

Getting the Boot Agent Information

Each adapter that can support a boot agent in flash ROM will have an IANet_BootAgent instance associated

with it using the IANet_DeviceBootServiceImplementation association class.

Task WQL Queries Result Class Comments

Get the Boot Agent associated

with an adapter

ASSOCIATORS OF {path of

IANet_EthernetAdapter}

WHERE ResultClass =

IANet_BootAgent

IANet_BootAgent The following read only

properties provide

information on the boot

ROM image for this

adapter:

InvalidImageSignature,

Version,

UpdateAvailable,

FlashImageType

Updating the configuration

In most cases, to update the configuration, the client application will need to get a client handle from the

IANet_NetService class and store this handle in an IWbemContext context object. Changes to the

configuration will only occur when the “Apply” method on the IANet_NetService is called.

Changing the adapter, team or VLAN settings

To change an adapter, VLAN or team setting, the client must first get the object path of the setting that it

will change. This is best done by enumerating the settings on the object and storing the __PATH attribute of

the setting (see above).

The easiest way for the client to update a setting, is to:

1) Get an instance of the setting object from WMI,

2) Modify the CurrentValue attribute (using IWbemClassObject::Put())

3) Call IWbemServices::PutInstance() to pass the modified instance back to the NCS2 WMI Providers. PutInstance

must be called with the flag WBEM_FLAG_UPDATE_ONLY.

The NCS2 WMI Providers will validate CurrentValue and return WBEM_E_FAIL if the validation failed. The

exact reason for the failure will be returned in the Description attribute of the IANet_ExtendedStatus object.

Setting specific descriptions include:

� The integer setting value was less than the minimum allowed

� The integer setting value was greater than the maximum allowed

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

64

� The integer setting value is not one of the allowable steps

� The length of the string setting is bigger than the maximum allowed

� The setting value is not one of the allowable values

The last description is returned whenever the current value for IANet_SettingEnum, IANet_SettingSlider or

IANet_SettingMultiSelection is not one of the allowable values.

The only attribute for a setting that the client can change is CurrentValue. The NCS2 WMI Providers will

ignore changes made to any of the other values. There are no supported methods on the setting class. To

make changes to a setting modify the CurrentValue property, then call PutInstance.

Creating a new team

Adapter teams can be created by utilizing classes and methods in the root\IntelNCS2 namespace:

1) Create an instance of IANet_TeamOfAdapters (i.e., use IWbemServices::GetObject() to get a class object

for IANet_TeamOfAdapters, and then use IWbemServices::SpawnInstance() to create an instance of

this object).

2) Use IWbemClassObject::Put to set the TeamMode attribute in the instance to be the desired team type

(e.g., AFT).

3) Finally, call IWbemServices::PutInstance() to create the team, passing the flag

WBEM_FLAG_CREATE_ONLY.

4) The object path for the new team is stored in the IWbemCallResultObject that is passed back to the

user when the call has completed. The method IWbemCallResult::GetResultString will get the new

object path. If this action fails, the client should check the IANet_ExtendedStatus to get the failure

reasons.

Adding an adapter to a team

1) Create an instance of IANet_TeamedMemberAdapter (i.e., use IWbemServices::GetObject() to get a

class object for IANet_TeamedMemberAdapter, and then use IWbemServices::SpawnInstance() to

create an instance of this object).

2) The following properties in the object must be set using IWbemClassObject::Put() :

3) GroupComponent must be set to be the full object path of the IANet_TeamOfAdapter which the

adapter is to be added

4) PartComponent must be set to be the full object path of the IANet_EthernetAdapter that is to be

added to the team.

5) Priority of the adapter in the team (optional)

6) Finally, call IWbemServices::PutInstance() to add the adapter to the team, passing the flag

WBEM_FLAG_CREATE_ONLY. If this action fails, check IANet_ExtendedStatus for the error code.

Removing an adapter from a team

To remove an adapter from a team, delete the IANet_TeamedMemberAdapter instance that associates the

adapter to the team using IWbemServices::DeleteInstance(). If this action fails, check IANet_ExtendedStatus

for the error code.

Deleting a team

To delete a team, delete the IANet_TeamOfAdapters instance using IWbemServices::DeleteInstance()

If this action fails, check IANet_ExtendedStatus to get the error code.

Changing the mode of a team

The client can change modes of a team, however, this action is limited to the root\IntelNCS2 namespace.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

65

1) Get the instance of IANet_TeamOfAdapters for the team (e.g., use IWbemServices::GetObject using the

object path of the team).

2) Use IWbemClassObject::Put to change the TeamMode attribute for the team.

3) Finally, call IWbemClassObject:: PutInstance to tell NCS2 WMI Provider to update the team mode,

passing the flag WBEM_FLAG_UPDATE_ONLY. If this action fails, check IANet_ExtendedStatus to get

the error code.

Changing an adapter’s priority within a team

1) Get the instance of IANet_TeamedMemberAdapter for the adapter. (e.g. use

IWbemServices::GetObject using the object path).

2) Use IWbemClassObject::Put to change the AdapterFunction attribute for the adapter.

3) Finally the client needs to call IWbemClassObject:: PutInstance to tell the NCS2 WMI Provider to

update adapter’s priority. If this action fails the client should check the IANet_ExtendedStatus for the

error code.

Uninstalling an adapter

To uninstall an adapter, call IWbemServices::DeleteInstance passing the object path of the adapter to

uninstall.

Creating a VLAN

The client can create VLANs on adapters or teams; this operation is limited to the root\IntelNCS2 namespace.

To create a VLAN

1) Call the CreateVLAN method on the IANet_802dot1QVLANService for the device (adapter or team) to

which the VLAN is to be added. The following arguments must be passed to the method:

2) VLANNumber the number of the VLAN. (Range 1- 4094)

3) Name a user definable name to identify the VLAN.

4) The function will return the object path of the newly created VLAN in the out parameter VLANpath. If

this action fails, check IANet_ExtendedStatus for the error code.

Changing the Properties of a VLAN

The client can change the VLANNumber and VLANName properties for a VLAN. This operation is only

supported in the Intel\NCS2 namespace.

To change the priority of an adapter

1) Get the instance of IANet_VLAN for the adapter (e.g. use IWbemServices::GetObject using the object

path).

2) Change VLANNumber or VLANName to the desired values.

3) Call IWbemClassObject:: PutInstance to tell the NCS2 WMI Provider to update the properties, passing

the flag WBEM_FLAG_UPDATE_ONLY. If this action fails, check the IANet_ExtendedStatus for the

error code.

Deleting a VLAN

To delete a VLAN, call IWbemServices::DeleteInstance passing the object path of the VLAN to delete.

Updating the Boot Agent

The client can update the Boot Agent Image by using methods calls.

To read/write flash image

1) Get the instance of IANet_BootAgent for the adapter (e.g., use IWbemServices::GetObject using the

object path).

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

66

2) Execute ReadFlash() to read the existing flash boot ROM image or ProgramFlash() to update the flash

boot ROM image. If this action fails, check the IANet_ExtendedStatus for the error code.

Run Diagnostics from WBEMTest

Here is the RunTest method, from the MOF file:

 “uint32 RunTest([IN] CIM_ManagedSystemElement ref SystemElement,

 [IN] CIM_DiagnosticSetting ref Setting,

 [OUT] CIM_DiagnosticResult ref Result);”

The first two parameters are IN parameters. You must get the object path of both objects referenced. You

must also get the object path of the IANet_DiagTest object, which is exporting the RunTest object.

1) From the main WBEM test dialog box:

2) Click “Connect”.

3) Enter the appropriate Server\Namespace. Namespaces IntelNCS2 and CimV2 are supported.

4) Click the “Enum Instances” button of WBEM test and enter “IANet_DiagTest”. Enable recursive queries.

5) Double click the desired instance of IANet_DiagTest. The name will be in the form X@[AdapterGUID}, where X is

the test name and AdapterGUID will be the Adapter Name, same as the Name key of the

IANet_EthernetAdapter. The following is an example of the object path retrieved:

\\MYCOMPUTER\root\Cimv2:IANet_DiagTest.Name="1@{4A0CDABE-F6C3-45D0-B60D-F6E7BAFA2C2C}"

6) Save the object path.

7) Click the “Enum Instances” button of WBEM test and enter “IANet_EthernetAdapter”

8) Double click on the desired adapter, to be tested. Following is an example of the object path retrieved:

\\MYCOMPUTER\root\cimv2:IANet_EthernetAdapter.DeviceID="{4A0CDABE-F6C3-45D0-B60D-

F6E7BAFA2C2C}"

9) Save the object path.

10) Click the “Enum Instances” button of WBEM test and enter “IANet_DiagSetting”

11) Double click on the setting which represents the desired adapter/test combination. Following is an example of

the object path retrieved: \\MYCOMPUTER\root\cimv2:IANet_DiagSetting.SettingID="1@{4A0CDABE-F6C3-

45D0-B60D-F6E7BAFA2C2C}"

12) Save the object path.

13) From the main WBEM test dialog box, click “Execute Method”

14) Paste the IANet_DiagTest object path into the dialog box. Click OK

15) Select the desired test in the drop down box under method.

16) Click the “Edit In Parameters” button.

17) For RunTest, Setting and SystemElement are the in parameters, paste the previously saved Setting and Adapter

object paths. Close.

18) Click the execute button.

19) Enumerate the IANet_DiagResult class, in the same manner as the In parameters were.

20) Examine the selected result object as needed.

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

67

Addendum to NCS2 Architecture
Note # Area Description

1 Method return values Notes regarding WMI methods offered by the NCS2 architecture.

2 iSCSI How to get and set iSCSI adapter states and settings.

3 Permissions Permissions required for set and get operations.

4 Context for CIMv2 namespace How to obtain client ID locks for the CIMv2 namespace.

5 Diagnostic results time limit There is a time limit on how long diagnostic results are available.

1) Method return values

When calling a method from the NCS2 architecture a numeric value will be returned. If the function call

was successful, a value of 0 will be passed back. A return value of 0 only indicates the function was able

to be called – it has no bearing on whether the function call had the expected outcome. In most cases,

you can expect a value of 0 to be returned, but will need to use other means to determining whether

the requested operation was successful.

2) iSCSI

The iSCSI settings of an Intel network card can be manipulated through the WMI interface. Only

operating systems which support iSCSI will have these settings available

Getting iSCSI Status

To retrieve the iSCSI status of a network card, enumerate instances of the

IANet_BootAgent_iSCSI_Adapters class. In this class, look at the iSCSI_Status parameter. This will

indicate the current state of your iSCSI enabled adapter.

Setting iSCSI Status

The iSCSI state of the adapter is manipulated through the SetiSCSI_Status method of the

IANet_BootAgent_iSCSI_Adapters class. This only controls whether the adapter can be set to a

Primary, Secondary or Disabled state.

Manipulating iSCSI Parameters

There are several settings applicable to iSCSI which can be manipulated through WMI. To locate these

parameters, use the table below to find the name of the class, the type of parameter, and guidelines

for setting them. Each iSCSI enabled adapter will have its own settings.

Setting Caption Class Notes

Authentication IANet_BootAgentSettingEnum 0 (Disable CHAP) or 1 (Enable CHAP)

BootLUN IANet_BootAgentSettingInt The iSCSI Boot LUN

ChapPassword IANet_BootAgentSettingString A string value no longer than 16 characters

ChapUserName IANet_BootAgentSettingString A string value no longer than 16 characters

InitiatorDHCP IANet_BootAgentSettingEnum This requires an string formatted as an IP address

InitiatorGateway IANet_BootAgentSettingString This requires an string formatted as an IP address

InitiatorIPAddress IANet_BootAgentSettingString This requires an string formatted as an IP address

InitiatorName IANet_BootAgentSettingString A string value no longer than 255 characters

InitiatorSubnetMask IANet_BootAgentSettingString This requires an string formatted as an IP address

White Paper White Paper White Paper White Paper ---- Intel PROSet for Windows Device Manager WMI User’s Guide

68

TargetDHCP IANet_BootAgentSettingEnum This requires an string formatted as an IP address

TargetIPAddress IANet_BootAgentSettingString This requires an string formatted as an IP address

TargetName IANet_BootAgentSettingString A string value no longer than 255 characters

TargetPort IANet_BootAgentSettingInt An integer between 0 and 65535

3) Permissions

Software changes require Administrator rights on the operating system. Any level of permissions

with WMI access rights can make queries to retrieve information. This applies to local and remote

access.

Windows Vista requires Administrator rights which can be obtained by logging in as the Administrator

account or elevating permissions for an Administrator group member.

4) Context for CIMv2 namespace

Making any changes requires a software lock ID, which can only be obtained through the

IANet_NetService class in the root\IntelNCS2 namespace. It is possible to facilitate setting changes in

the CIMv2 namespace but the client access lock get and apply operations will need to occur in the

root\IntelNCS2 namespace.

5) Diagnostic results time limit

The NCS2 providers will automatically terminate within a few minutes of not being used. When this

event occurs, all diagnostic results will be lost.

6) Remote Desktop Limitations

When connecting to a computer remotely with Remote Desktop Protocol and no Administrator locally

logged in, use the “/console” option. The other workaround is to make sure a local Administrator

account is logged in when initiating remote desktop access. This makes sure the WMI layer can

authenticate with the local permissions.

