
Programmer’s Reference Manual

…for Microsoft® Windows

2060 Rev 1.5
15 Aug 00

AuthenTec, Inc.
Post Office Box 2719

Melbourne, Florida 32902-2719
321-308-1300

www.authentec.com

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 2

AuthenTec welcomes your input. We try to make our publications useful, interesting, and informative, and
we hope you will take the time to help us improve them. Please send any comments or suggestions by
mail or e-mail.

Disclaimer of Warranty
THE SOFTWARE, INCLUDING INSTRUCTIONS FOR ITS USE, IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND. AUTHENTEC FURTHER
DISCLAIMS ALL IMPLIED WARRANTIES INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR OF FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK ARISING OUT OF THE USE OR PERFORMANCE OF THE SOFTWARE AND DOCUMENTATION REMAINS
WITH YOU.

IN NO EVENT SHALL AUTHENTEC, ITS AUTHORS, OR ANYONE ELSE INVOLVED IN THE CREATION, PRODUCTION, OR DELIVERY OF THE
SOFTWARE BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGE FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE
THE SOFTWARE OR DOCUMENTATION, EVEN IF AUTHENTEC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
STATES OR COUNTRIES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE
ABOVE LIMITATION MAY NOT APPLY TO YOU.

U.S. Government Restricted Rights
The software and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 or subparagraph (c)(1) and (2) of the Commercial Computer Software – Restricted Rights 48 CFR 52.227-19,
as applicable. Manufacturer is AuthenTec, Inc., Melbourne, Florida 32901-2719.This Agreement is governed by the laws of the
State of Florida.

AuthenTec, Inc.
Post Office Box 2719
Melbourne, Florida 32902-2719
321-308-1300
www.authentec.com
apps@authentec.com

AuthenTec, FingerLoc, FingerLoc Aware, TruePrint, the AuthenTec logotype, and the phrase “Personal Security for the Real World”
are trademarks of AuthenTec, Inc. Microsoft and Windows 98 are registered trademarks of Microsoft Corp. All other trademarks are
the property of their respective owners.

Programmer’s Reference Manual for Microsoft Windows
2060 Rev 1.5 (15AUG00)

Copyright  1998-2000 by AuthenTec, Inc. No part of this publication may be reproduced in any form or by any means without prior
written permission. Printed in the United States of America.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 3

Table of Contents
INTRODUCTION...5

FINGERPRINT BIOMETRIC PROGRAMMING OVERVIEW...5
TEMPLATE STORAGE OVERVIEW ...8

FAS Internal Template Database...9
API GROUP OVERVIEW ..10
SOURCE CODE EXAMPLES..12

THE HIGH PERFORMANCE API ...13
THEORY OF OPERATION ...14
API FUNCTION CALLS ..15

Event Messages...16
Synchronous Operation Implementation..17
Asynchronous Operation Implementation..17

APPLICATION EXAMPLE...19

THE FINGERPRINT SERVICES API..20
THEORY OF OPERATION ...21
API FUNCTION CALLS ..22

Event Messages...23
Synchronous Operation Implementation..25
Asynchronous Operation Implementation..26

APPLICATION EXAMPLE...27

THE CONVENIENCE API ...28
THEORY OF OPERATION ...29
API FUNCTION CALLS ..29

THE IMAGE CAPTURE API ...30
API FUNCTION CALLS ..30

THE UTILITY AND COMMON API ...32
API FUNCTION CALLS ..32

EVENT MESSAGES, ERROR CODES, AND RETURN CODES ..34
EVENT MESSAGES ...34
ERROR CODES ...34
RETURN CODES...35

THE HIGH PERFORMANCE API DEMONSTRATION ..36
DESCRIPTION...36

File..37
Enroll User..37
Validate User ID ...40
Verify Template ..41
Identify User ...41
Help ..41

IMPLEMENTATION ..42

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 4

API REFERENCE ...47
FingerLocAllocOSBitmap .. 48
FingerLocClose ... 49
FingerLocCloseStream.. 50
FingerLocConvertRawImageToOSBmp .. 51
FingerLocDeleteOSBitmap.. 52
FingerLocDeleteUser... 53
FingerLocEnroll ... 54
FingerLocGetCurrentImage... 56
FingerLocGetImageState .. 57
FingerLocGetLeds ... 58
FingerLocGetNextUser.. 59
FingerLocGetResultDetails.. 60
FingerLocGetVersion... 61
FingerLocIdentify ... 62
FingerLocInit.. 63
FingerLocOpenStream .. 64
FingerLocReleaseImage ... 65
FingerLocResample150 .. 66
FingerLocResample200 .. 67
FingerLocSetLeds ... 68
FingerLocValidateFingers.. 69
FingerLocValidateID .. 70
FLAbortTransaction ... 71
FLBeginAcquireImage ... 72
FLBeginEnroll .. 73
FLBeginIdentify.. 75
FLBeginValidateID... 76
FLBeginVerify .. 77
FLBuildMatchTemplate.. 79
FLBuildOSBmpHeader .. 80
FLBuildReferenceTemplate... 81
FLContinueTransaction ... 82
FLConvertNormalReferenceTemplateToSmall.. 83
FLEndAcquireImage.. 84
FLEndEnroll... 85
FLEndIdentify .. 86
FLEndIdentifyEx .. 87
FLEndValidateID ... 88
FLEndValidateIDEx ... 89
FLEndVerify... 90
FLEndVerifyEx... 91
FLGetCommPort ... 92
FLGetImageBufferSize .. 93
FLGetMatchTemplateSize... 94
FLGetOSBmpHeaderSize ... 95
FLGetReferenceTemplateSize .. 96
FLGetSmallReferenceTemplateSize ... 97
FLMatchTemplatePair ... 98
FLMatchTemplatePairEx ... 99
FLReadCommPort... 101
FLReleaseCommPort .. 102
FLReleaseMessage... 103
FLWriteCommPort... 103

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 5

Introduction
The Application Program Interface (API) software detailed in this document includes extensive
functional features and services, enabling evaluators and customers to integrate the advanced
TruePrint™ Technology of the FingerLoc™ Authentication System (FAS) directly into their
application programs.

The API allows other programs running on the same personal computer (or network) to
communicate with the features and services of the FingerLoc sensor IC. It allows fingerprint
identification processes to be called from any application that can call a Microsoft® Windows®

DLL, such as C and C++ personal computer programs.
As a matter of policy, AuthenTec continuously evaluates the various proposed standards for
biometric system APIs (such as the Human Authentication - Application Programming
Interface (HA-API) of the U.S. Department of Defense). Naturally, this research has a
pervasive influence on the general course of our product development.

In this spirit, we actively solicit the opinions and advice of our evaluators and customers
regarding this and other API releases, especially regarding standards and requirements for
expanded API services.

Fingerprint Biometric Programming Overview
This document makes reference to many terms and operations that are used within the
fingerprint biometrics field. This section provides an overview of these terms and operations,
not only from a programmer’s perspective, but also how they apply to the FingerLoc
Authentication System.

The FAS is a combination of the sensor IC required to scan a finger to obtain a fingerprint, and
the underlying software components necessary for sensor control, image data collection,
fingerprint template creation, fingerprint template storage, and fingerprint template matching
and identification. The Dynamic Optimization™ features designed into TruePrint Technology
enables fingers with a wide range of physical characteristics such as wetness, dryness, age,
and skin type to be successfully scanned for their respective fingerprint. In addition, this same
technology can obtain fingerprint scans on fingers coated with contaminants such as oils, dirt,
dust, and other contaminants.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 6

The FAS supplies three API groups in order to accomplish these operations: High
Performance API, Fingerprint Services API and the Convenience API. Additionally, there are
two other APIs supplied to assist an application in other tasks as well. These five API groups,
listed below, are discussed in detail in the sections to follow.

♦ High Performance

♦ Fingerprint Services

♦ Convenience

♦ Image Capture

♦ Utility and Common

Application programs integrate fingerprint biometric technology by exercising specific types of
operations, or primary processes, that are grouped into four categories:

♦ Enrollment This is the process by which a fingerprint template is created or
extracted from the scanned image of a fingerprint and subsequently
stored in an internal or external database. The stored template is
designated as the “reference template” and is compared against
fingerprint templates (called “match templates”) that are acquired by
the FAS during future fingerprint authentication operations (that is,
Identification, Verification, and Validation).

The fingerprint template contains the necessary metrics required to
mathematically describe the respective fingerprint. Each of the High
Performance API, Fingerprint Services API, and Convenience API
provides a mechanism to enroll fingers. Refer to the respective
sections of this manual for details on how to implement the
enrollment process for each API. Refer to the “Template Storage
Overview” section within this manual for more information regarding
FAS templates.

♦ Identification This is the process by which a finger placed on the sensor is
scanned, and the resulting image processed, to produce a fingerprint
template (match template). The template is then compared to the
reference templates stored in a database. A mathematical
correlation between the match template and the reference template
is used to identify the person (user) that has placed their finger on
the sensor (“Who am I?).

Each of the High Performance API, Fingerprint Services API, and
Convenience API provides one or more or methods to accomplish
identification operations. The High Performance API and the
Convenience API provide designated Identification functions that use
the internal FAS database for template comparison. The High
Performance API and the Fingerprint services API can also perform

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 7

identification using external databases. Refer to the respective
sections of this manual for details on how to implement the
identification process for each API. Identifying a single user from a
large fingerprint database can be a very time-consuming operation.

The FAS operates with two types of fingerprint templates: a larger
template that enables high-speed identification, and a smaller
template for use where external storage is limited and look-up speed
is not the primary issue. Use of these templates is described in the
Template Storage Overview section of this manual. Refer to the
respective High Performance API, the Convenience API, and the
Fingerprint Services API sections of this manual to get information
on the actual size of the small and large exported templates.

♦ Verification In this process, a finger placed on the sensor is scanned and the
resulting image processed to produce a fingerprint template (a
“match” template). The match template is then compared to an
external reference template that has been passed in from the calling
application. A mathematical correlation between the match template
and the reference template verifies that the person with the finger on
the sensor corresponds to the person described by the reference
template (“Am I who I say I am?”). This approach is very useful in
situations where the user is known and it is necessary to verify that
the person claiming to be the user is not an imposter.

Each of the High Performance API, the Fingerprint Services API,
and the Convenience API provides one or more methods to
accomplish Verification operations. Refer to the respective sections
of this manual for details on how to implement this process for each
API.

Validation In this process, a reference template for a designated user is
obtained from a database. A finger is then placed on the sensor and
scanned to produce a temporary fingerprint template (match
template). The match template is then compared against the
reference template. A mathematical correlation between the match
template and reference template validates that the person with their
finger on the FingerLoc sensor IC corresponds to the person
described by the reference template (“Am I the person in the data
base?”).

Validation is very similar to Verification, the difference being that in
Validation a reference template is already stored in an internal
database. Rather than passing an entire template, a simple User ID
is passed and subsequently the corresponding template is looked up
from an internal database. The High Performance API and the
Convenience API both provide functions to accomplish a Validation
operation.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 8

Template Storage Overview
The FAS creates fingerprint templates from images acquired by scanning a finger with the
FingerLoc sensor IC. A fingerprint template contains only the necessary metrics required to
mathematically describe its parent fingerprint. Fingerprint templates stored in a database for
future use are called “reference templates”. Temporary fingerprint templates that are
generated by the FAS during normal use are called “match templates”. Match templates are
compared to reference templates during the various identification, verification and validation
operations and destroyed when the operation is complete. Reference templates are created
either by calling the Enrollment function of the High Performance API or the Convenience API,
or by calling the build reference template procedure of the Fingerprint Services API.

Fingerprint templates can be stored either internally or externally. Internal templates are
automatically managed by the FAS and stored in a special database. Internal templates are
added to the database by the FAS during an Enrollment and removed from the database by
the FAS in response to a Delete User request from an application program. Templates that are
stored externally must be stored and managed by the application program. Optionally, external
templates are exported to the application program from the Enrollment functions of the High
Performance API and Convenience API, or by the Build functions of the Fingerprint Services
API.

It is the responsibility of the application program to present the externally stored template to the
FAS whenever the application wishes to execute an identification, verification, or validation
operation. Additionally, some application solutions may use a storage scheme that combines
combination internal and external template storage. All templates, whether stored internally or
externally, are compressed and encrypted. The format of an actual fingerprint template is
proprietary. Refer to the respective sections of this manual that describe the High Performance
API, the Convenience API, and the Fingerprint Services API for more information on creating,
storing, and exporting templates using the Enrollment and Build functions.

The FAS uses two different sizes of fingerprint templates, classed as “large: and “small”. Large
templates provide additional information that enables high-speed (one-to-many) user
identification from large template databases. Small templates are used in solutions where
memory space requirements are limited and high-speed identification is not crucial (such as
“smart card” applications). The FAS uses a large size as its native mode when creating or
internally storing templates. All API functions that perform Enrollment or that build match or
reference templates from fingerprint images only create large templates. Thus all internally
stored templates and exported (external) templates created are of the large size. Applications
that wish to store small fingerprint templates must convert the template exported by an
Enrollment function (from the High Performance API or Convenience API) or a template
created using a Build function (Fingerprint Services API) to a small template using the proper
conversion functions prior to storage. Any Identification, Verification, or Validation operation
that uses reference templates stored in the internal database will automatically use large
templates.

Conversely, an application program can perform an Identification or a Verification operation
(Validation not valid for externally stored templates) by presenting either large or small
templates to the FAS. The FAS uses high-speed look-up of the User ID when an application
presents a list of externally stored fingerprint templates that consists of only large templates
during an Identify operation. High-speed User ID look-up is not used if the application program
presents a list of externally stored fingerprint templates that consists of a mixture of small and
large templates, or all small templates, during an identify operation. Refer to the respective

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 9

High Performance API, the Convenience API, and the Fingerprint Services API sections of this
manual to get information on the actual size of the small and large exported templates.

FAS Internal Template Database

As previously stated, internal templates are added to the database by the FAS during an
Enrollment process, and removed from the database by the FAS in response to a Delete User
request from the application program. The Enrollment functions found in the High Performance
API and the Convenience API can be called with parameters that specify to save the
fingerprint template resulting from the Enrollment operation into the internal FAS template
database.

Fingerprint templates for a specific finger are stored as a sub-record for the User to whom the
finger belongs. Users are assigned a User ID by the application program when a call is made
to enroll a finger. The User ID assigned to each user must be unique, otherwise the Enrollment
function will return an error. The FAS refers to internally stored user information by the unique
User ID. The User ID is embedded as a member of the tsFL_ID_INFO structure as shown
below.

typedef struct
{

uint16 iIDStructSize ; // field contents not required
int8 iUserId[24] ; // Null terminated 23 char User ID for this user
int8 iDisplayName[74] ; // Display Name for this user (optional)

} tsFL_ID_INFO;

The User ID can be any sequence of bytes with a length not longer than 23, and must be
terminated with a NULL. Optionally, an application can assign a sequence of NULL-terminated
bytes, up to 74 (including the NULL terminator) characters, to the iDisplayName member of
the tsFL_ID_INFO structure. The information in this field is simply stored in the User’s record
for later use by the application program. As indicated by the nomenclature of the actual
structure member, various applications use this field to store the User’s actual ASCII name
(first and last) in order to associate the User to the User ID. The iDisplayName field cannot be
modified once the user is enrolled for the first time.

In addition, the Enrollment functions require a finger number to be supplied as an input
parameter. The finger number passed in can be any int16 value. It is the responsibility of the
application program to provide it’s own finger number scheme to associate the fingerprint
template being stored to the physical finger.

The application creates a new User in the FAS internal template database by enrolling the
User and the finger with a User ID that does not currently exist (the finger number must also be
specified). The application can add a new finger to an existing User by calling the desired API
Enrollment function using the exact User ID of the existing User record, then specifying a finger
number that does not currently exist for the existing user. Existing fingerprint templates for a
specific finger number can be replaced by re-enrolling a finger and specifying the exact User
ID for the existing user and the exact finger number of the existing fingerprint template to be
replaced.

The application can request that a specific User be removed from the internal FAS database
by calling the FingerLocDeleteUser function (of the Utility and Common API) and supplying
the desired User ID. All fingerprint templates currently stored for the deleted User are also

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 10

deleted. There is no method to delete an individual fingerprint template currently stored for an
existing User without deleting the entire User record.

An application program can use the FingerLocGetNextUser function (Utilities and Common
API) to build a list of all Users and their associated User ID and Display Names from the User
records that are stored in the FAS internal database. A list is built by calling this function in a
loop until an end-of-Users condition is signaled. This looping method can be used to obtain a
count of the total number of Users stored in the internal FAS database. Currently no other
information regarding the Users and/or their associated fingerprint templates can be retrieved.
Design changes are in-progress to provide applications with a much more robust set of
database management features.

API Group Overview
The FAS features and services provide five different groups of API functions. These are
intended to address the needs of various API users by enabling access to the sensor IC and
biometric services in many different ways.

The scope of these function groups range from the Image Capture API, which presumes that
the application has a non-AuthenTec fingerprint-matching algorithm, to the Convenience API in
which the FAS features and services do virtually all of the work. All of the API functions are
available all of the time, but the functions are meant to work in concert with the others in their
group.

The following API service groups and specific API services are provided in this release:

♦ The High Performance API
This set of functions allows a user interface application to take full advantage of the
streamed images and real-time adaptability of the FAS to provide optimum ability to
acquire difficult fingerprints and exceptional ability to adapt to changing finger
conditions and environments (Dynamic Optimization).

Some advantages of this API group over the Fingerprint Services API, described
below, include simplified operation (integrated sensor and matcher system is easier to
use) and optional use of internal or external template storage databases. This group
provides the highest performance possible while still giving the application complete
control over the Graphical User Interface (GUI).

♦ The Fingerprint Services API
This set of functions provides a user interface application, or calling application, with
the ability to perform similar operations to legacy APIs typically used with optical
sensor technology. In addition, the interface also maximizes the use of the Dynamic
Optimization features available in the sensor IC during scanning operations. This
interface is useful to speed migration from existing legacy systems or in special cases
where the design of the interface fits best for a specific solution.

Unlike the High Performance API, the various operations of the Fingerprint Services
API do not provide simplified operations of an integrated sensor and matcher system.
The Fingerprint Services API does however provide an advantage in networked
systems where an acquired match image can be collected by a remote sensor and

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 11

shipped over the network to a central processor responsible for reference template
storage and matching.

♦ The Convenience API
This set of functions provides an application with a simplistic one-step mechanism to
perform primary operations such as Enrollment, Identification, Verification, and so on.
The function calls of this API provide their own GUI interface objects, such as
feedback windows and interactive dialog box controls.

The Convenience API is designed to provide a calling application with a set of
functions that maximize the use of the TruePrint Technology Dynamic Optimization
features available in the sensor IC during finger scanning operations. The
Convenience API allows a means to quickly construct demonstrations directly from
applications in order to evaluate the sensor. Most developers will want to replace
functionality provided by this group of API functions with that of either the High
Performance or Fingerprint Services APIs for their final product.

♦ The Image Capture API
This set of functions allows the calling application to receive images only. It includes
the functions necessary to open the sensor stream, close the sensor stream, get the
current image status, and get the current image. No Dynamic Optimization is
performed when using the functions of this API.

♦ The Utility and Common API
The Utility and Common API provide the programmer with several commonly needed
utility functions. Functions for image re-sampling, image format conversion, database
manipulation, program initialization, sensor communication control and error reporting
are included.

All of the APIs work on a client/server basis. The FAS loads supporting software when the
operating system is booting, and the API interfaces to that data object. This client/server
arrangement allows multiple applications to access the system. (FingerLoc features and
services work with only one application at a time, but applications are pushed and popped into
the server’s context.)

The following sections describe each of the API groups in detail, with function prototypes and
diagrams where appropriate.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 12

Source Code Examples
Several sample programs are included with the Software Developer’s Kit (SDK.) These
programs were installed in the same directory selected for the SDK. The sample code is in the
\FingerLoc sub-directory under \samples.

If your application uses Microsoft Foundation Classes (MFC) in a shared DLL, and your
application is in a natural language other than the current language of the operating system,
you must copy the corresponding localized resources MFC42xxx.DLL from the Microsoft
Visual C++ compact disc to…

\WINDOWS\SYSTEM\MFCLOC.DLL

or to…

\WINDOWS\SYSTEM32\MFCLOC.DLL

In which the xxx in the resource file name represents the three-letter language abbreviation.
(for example, MFC42DEU.DLL contains resources translated into the German (Deutsch)
language). If you don't do this, some of your application’s user interface elements will remain in
the language of the operating system.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 13

The High Performance API
The High Performance API is designed to provide a user interface application, or calling
application, with a suite of functions that will maximize use of the TruePrint Technology
Dynamic Optimization features available in the sensor IC during finger scanning operations. In
addition, the High Performance API provides start-to-finish automated control of the primary
processes, such as Enrollment, Verification, and Identification, once the process has been
initiated by the calling application.

The High Performance API provides the following functionality:

♦ Enrollment (creation of reference templates) of User’s fingers.

♦ Identification to look up which, if any, user stored in the internal, or external,
database belongs to a finger on the sensor.

♦ Validation that the finger on the sensor belongs to a specified user according to the
specified user’s template stored in the internal database.

♦ Verification that a finger on the sensor matches that of a user finger template stored
in an external template or list of external templates passed in.

The automation features of the High Performance API makes it unnecessary for the calling
application to manipulate any type of low level sensor objects such as collecting raw fingerprint
images, or creating reference or match templates. Fingerprint templates created by the High
Performance enrollment process can be stored in the internal database, exported to the calling
application for external storage or both stored internally and exported. Identification, Validation,
and Verification operations can be called once a finger has been enrolled.

The application enrolls Users simply by calling the Enrollment function of the API and passing
it the desired User and finger ID information in addition to specifying whether the created
fingerprint template should also be stored in the internal FAS database (templates are always
made available for export). The calling application is signaled when the operation is complete
and the operation’s results are available.

Identification, Validation, and Verification are accomplished in a similar manor. The application
simply calls the desired API function while passing the necessary information and the FAS
automatically executes the entire operation. The calling application is signaled when the
operation is complete and that the results are available.

These design features and abilities simplify the usage of the FAS by the calling application.
The High Performance API should be used for any authentication solutions that are located on
a standalone system where the sensor IC and the database that stores the reference
templates for the users and their fingerprints reside on the same device.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 14

The High Performance API

Theory of Operation
The High Performance API uses a transaction-based methodology to interact with the calling
application. Each API operation is initiated by the application program with a Begin type
function call and subsequently terminated with an End type function call; for example,
FLBeginEnroll and FLEndEnroll. Once an operation (transaction) has begun, event
messages are sent to the calling application from the FAS. These event messages provide the
calling application with feedback information as to the progress of the current transaction. The
event messages contain various items such as fingerprint images that can be used for display,
finger placement information, sequencing information and so on. The calling application
processes these event messages in order to update user displays and to control various
stages of the current transaction. The FAS sends a Data Ready event message to indicate
that the operation is complete. The calling application processes the Data Ready event
message and in turn calls the transaction’s corresponding End function to obtain the final
results and end the current transaction.

The calling application can receive the event messages from the FAS using either a
synchronous or asynchronous method. The synchronous method requires the application to
call into the FAS to obtain each event message. Once obtained, the application processes the
event message and calls a subsequent Release function to release the message. This
procedure is then repeated for the next event message. The asynchronous method requires
the calling application to pass a pointer to a callback function as a parameter to the
transaction’s Begin function call. The FAS will in turn call the Callback function with event
messages at the time the event message is produced (asynchronous to the calling
application’s process execution). The application’s Callback function provides the code
necessary to process the various event messages. A call to Release the message must also
be included within the Callback procedure.

There is an advantage to using the asynchronous event message processing method over the
synchronous event message processing method. Asynchronous event message processing
allows the calling application to initiate a transaction and continue with its normal path of
execution. The main application remains free for processing other tasks during the open
transaction. However, it is not always possible to correctly implement the required Callback
function necessary to enable the asynchronous method. The synchronous method requires
the thread of the calling application to loop while polling for event messages during the open
transaction. This method makes it more difficult for the application program to process other
tasks, such as user input, in between event message processing.

An application can prematurely terminate an in-progress transaction by calling the High
Performance API Cancel Transaction function.

The basic operational flow for the two modes is described in the following sections.

Note: Most of the functions in the High Performance API can time out. When
this occurs, the server sends a message indicating that a timeout has
occurred.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 15

The High Performance API

API Function Calls
The functions in the High Performance API group are shown below.

• FLBeginEnroll - This function initiates an Enrollment operation - that is, create a
fingerprint template for - a finger for a specified user. Several parameters are
passed into this function including the User ID, the number of the finger to be
enrolled, and so on.

• FLEndEnroll – This function retrieves the results from an Enrollment operation
that is currently in progress, once the results are available. The exported template
is also made available to the calling application, in addition to the results of the
Enrollment.

• FLBeginValidateID – This function initiates a Validation operation to determine if
the finger placed on the FingerLoc sensor IC matches a finger that belongs to a
User whose User ID in the internal database corresponds to that which is passed
into the function

• FLEndValidateID – This function retrieves results from a Validation operation that
is currently in progress, once the results are available.

• FLEndValidateIDEx – This function retrieves results from a Validation operation
that is currently in progress, once the results are available. In addition, the
function returns the strength of the match results, based on FAR/FRR.

• FLBeginVerify – This function initiates a Verification operation to verify that the
finger placed on the FingerLoc sensor IC matches one of the fingerprint templates
passed into the function from an external template or list of templates.

• FLEndVerify – This function retrieves the results from a Verification operation
that is currently in progress, once the results are available.

• FLEndVerifyEx – This function retrieves the results from a Verification operation
that is currently in progress, once the results are available. In addition, the
function returns the strength of the match, based on FAR/FRR.

• FLBeginIdentify – This function initiates an operation to look up or identify the
User ID, if any, of the User whose finger matches that of the finger that is placed
on the sensor. This Identification operation uses templates stored in the internal
database for the comparison process.

• FLEndIdentify – This function retrieves the results from an Identification
operation that is currently in progress, once the results are available.

• FLEndIdentifyEx – This function retrieves the results from an Identification
operation that is currently in progress once the results are available. In addition
the function returns the quality scoring values that were used to make the match.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 16

• FLContinueTransaction – This function retrieves a pointer to the next event
message sent from the FAS when an event is available while using the High
Performance API in the synchronous mode of operation. Function returns a NULL
if an event message is not available at the time of the call. Once a valid message
is processed the FLReleaseMessage function must be called in order to delete
the message.

• FLReleaseMessage – This function releases (deletes) the memory space
allocated by a valid message that was returned by a previous call to
FLContinueTransaction while operating in (synchronous mode) or a message
that was received by a callback function while operating in asynchronous mode.

• FLAbortTransaction – This function aborts the current operation (transaction)
and returns the FAS to an idle state. Calling this function will abort any operation
(transaction) currently in progress. This function requires the transaction ID that
was returned by the operation originally initiated with a Begin function called.

The functions in this group are listed alphabetically and described in detail in the “API
Reference” section of this manual.

Event Messages

Event messages are passed throughout the system using a pointer to a tsFL_API_MSG event
message structure as shown below. The first member of the event message structure contains
the message type. The second parameter contains the sub-message number for the
respective message type. Only a few message types actually have a sub-message number.
The third parameter contains a pointer to the actual message data.

This data depends upon the message type. For example, if the message type is an
FL_API_NEW_DISPLAY_IMAGE, the pMessageData pointer points to a buffer that contains
a raw fingerprint image that can be formatted and displayed by the calling application. Details
of the message types, sub-message numbers, and message data information can be found in
the header file FLStdPI.h. The table below outlines the various message types that can be
expected when processing event messages.

typedef struct
{

uint16 uiMessageType ;
uint16 uiSubMessageNum ;
void* pMessageData ;

} tsFL_API_MSG;

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 17

MESSAGE TYPE DESCRIPTION

FL_API_NEW_DISPLAY_IMAGE Sensor has a new image to be displayed.
FL_API_CLEAR_DISPLAY_IMAGE Clear the last displayed image.
FL_API_NEW_STATE_TEXT The state of the sensor has changed - display a new text

message.
FL_API_CLEAR_STATE_TEXT Sensor state text message is no longer valid.
FL_API_PLAY_PROMPT_SOUND Play sound for action completion, end of capture, capture

rejection, and so on.
FL_API_NEW_PROMPT_TEXT Prompt the user for a finger action.
FL_API_CLEAR_PROMPT_TEXT Remove any user prompts from the display.
FL_API_ACQUIRE_DATA_RDY The Acquisition transaction has the final data ready.
FL_API_ENROLL_DATA_RDY The Enrollment transaction has the final data ready.
FL_API_VALIDATE_DATA_RDY The Validation transaction has the final data ready.
FL_API_VERIFY_DATA_RDY The Verification transaction has the final data ready.
FL_API_IDENTIFY_DATA_RDY The Identification transaction has the final data ready.
FL_API_END_OF_VIEW The finger has been lifted from the sensor
FL_API_TIMEOUT The transaction was canceled due to a timeout condition.
FL_API_IDLE_50 API has been idle for 50 milliseconds.

Synchronous Operation Implementation

The application first responds to the User’s request for enrollment or identification service. It
then collects the information needed for the specified operation. This may include the User’s
name, a User ID, the finger to process, or any other data the application requires.

The application then passes the data as parameters to the appropriate Begin function that in
turn returns a Transaction ID that must be saved for later use. The application then polls the
FAS for event messages by calling the FLContinueTransaction function. If an event
message is available the application processes it. If no event message is available, the
application simply sleeps for a short time (10 to 100 milliseconds), then calls
FLContinueTransaction again to make another request for an event message. Event
messages such as FL_API_NEW_DISPLAY_IMAGE, FL_API_NEW_STATE_TEXT,
FL_API_NEW_PROMPT_TEXT, and so on, will be returned throughout the open operation
(transaction). Eventually an FL_API_XXXXXX_DATA_RDY or an FL_API_TIMEOUT event
message will be sent to indicate that the operation has completed or that the operation or has
timed out due to lack of user interaction with the sensor. If the FL_API_XXXXXX_DATA_RDY
event message is sent the application must call the balancing End function to gracefully end
the transaction in progress. It is not necessary to call the End function if the transaction has
been canceled by an FL_API_TIMEOUT event message.

Asynchronous Operation Implementation

The application first responds to the user’s request for enrollment or identification service. It
then collects the information needed for the specified operation. This may include the user’s
name, an ID, specification of the finger to process, or any other data the application requires.

The application then sets up any global information needed by the Callback routine. The
Callback function’s address is passed as a parameter to the appropriate Begin function which
in turn returns a Transaction ID that must be saved for later use.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 18

The Begin function starts the operation (transaction) and returns to the application where the
calling thread is then free to continue with normal idle loop execution. Through the transaction
process the FAS asynchronously calls the application’s Callback function with event messages
such as FL_API_NEW_DISPLAY_IMAGE, FL_API_NEW_STATE_TEXT,
FL_API_NEW_PROMPT_TEXT, and so on. Eventually an FL_API_XXXXXX_DATA_RDY or
an FL_API_TIMEOUT event message will be sent to indicate that the operation has
completed or that the operation or has timed out due to lack of user interaction with the sensor.

If the FL_API_XXXXXX_DATA_RDY event message is sent, the application must call the
balancing End function to gracefully end the transaction in progress. It is not necessary to call
the End function if the transaction has been canceled by an FL_API_TIMEOUT event
message. Once the Callback is executed with a message indicating the transaction has
finished, it notifies the idle loop of the application (using some type of signal or global variable)
that the result is waiting.

The pointer version of the Callback function below is prototyped in the FLStdApi.h header file
along with the definitions for the API messages.

Asynchronous callback function:

void FL_Notify_Callback (uint32 uiCallerDWord, tsFL_API_MSG*pApiMsg);

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 19

The High Performance API

Application Example
A complete sample application that uses the High Performance API is available in the
FLHighPerformanceAPIDemo sub-directory. A step-by-step illustration of how to handle the
Enrollment functionality in an asynchronous manner, is shown in the following diagram:

Figure 1

FingerLoc System Applications Program

Enroll Transaction thread - Async callback form

Get UID

Accept
Enroll

Enroll
Display

Accept
Enroll

End Enroll

Begin Enroll({UID})

To ext.
Fp. db

FingerLoc System - Hi Performance Fingerprint API

Optional User
Feedback

Optional User
Feedback

Optional
Image Display

Start
Sensing

Detected
Finger

Acquire
Image

Analyze
 Image

Start
Enroll

Place finger

Finger Detected

New Display Image

- No Core
- Lift and Center

Opt. Local
Template

Opt. Local
Template

End Enroll()

Return Reference Template

Enroll data ready
Generate
Template

Analyze
Features

Picture counter []i.e, View “n” is complete

L1

L2

L3

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 20

The Fingerprint Services API
The Fingerprint Services API provides an application with a set of functions that perform
operations similar to the legacy APIs typically used with optical sensor technology. In addition,
the interface maximizes the use of the TruePrint Technology Dynamic Optimization features
available in the FingerLoc sensor IC during scanning operations. This interface is can be used
to speed migration from existing legacy systems, or in special cases where the design of the
interface is the best fit for a specific solution.

Like the High Performance API, the Fingerprint Services API requires the calling application or
process to provide the user interface, if any. Unlike the High Performance API, the various
operations of the Fingerprint Services API do not provide start-to-finish automatic control over
primary processes such as Enrollment, Verification, Identification, and so on. These primary
operations are accomplished in stages, where the calling application requests the FAS to
perform a specific operation, or service, on a target object. Performing a combination of
different steps on the target object will eventually result in the completion of a primary process.

The Fingerprint Services API provides the following functionality:

♦ Services to obtain sizes for objects such as images, bitmap headers, match
templates, and reference templates.

♦ Services to acquire fingerprint images from the sensor.

♦ Services to create or build objects such as match templates, reference templates, and
bitmap headers from acquired fingerprint image data.

♦ Services to compare reference template objects to match template objects in order to
determine if the templates are cognate with an identical finger.

The application accomplishes Enrollment by requesting the FAS to acquire a fingerprint image
from a finger. A reference template is created from the acquired fingerprint image by passing
the image into the appropriate API function. This reference template is then stored in an
external database for later use. The application is responsible for maintaining all information
regarding the enrolled template.

When the application desires to identify a User it requests the API to acquire a fingerprint
image for the finger that is placed on the sensor. A match template is then created from the
acquired fingerprint image by passing the image into the appropriate API Build function. The
match template is then presented as an input parameter to the API matching function along
with a desired reference template. The two templates are then compared to determine if they
represent the same finger. The match template is temporary - it is discarded after this
comparison.

The calling application accomplishes primary matching processes such Identification,
Verification, and Validation by presenting externally stored reference templates to the matching
function of the API on a one-to-one basis with the temporary match template.

The nature of the design of the Fingerprint Services API makes it a viable solution in
networked systems where an acquired match image can be collected by a remote sensor and

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 21

shipped over the network to a central processor responsible for reference template storage
and matching.

The Fingerprint Services API

Theory of Operation
Like the High Performance API, the Fingerprint Services API uses a transaction-based method
to interact with the calling application. Each API operation is initiated by the application with a
Begin function call and terminated with a balancing End function call. An example of such a
pair is FLAcquireImage and FLEndAcquireImage. Once an operation (transaction) has
begun, event messages are sent to the calling application from the FAS.

These event messages provide the calling application with feedback information as to the
progress of the current transaction. The event messages contain various items such as
fingerprint images that can be used for display, finger placement information, sequencing
information and so on. The calling application processes these event messages in order to
update user displays and to control various stages of the current transaction. The FAS sends a
Data Ready event message to indicate that the operation is complete. The calling application
processes this message and in turn calls the transaction’s corresponding End function to
obtain the final results and terminate the current transaction.

The calling application can receive the event messages from the FAS using either a
synchronous or asynchronous method. The synchronous method requires the application to
call into the FAS to obtain each event message. Once obtained, the application processes the
event message and calls a subsequent Release function to release the message. This
procedure is then repeated for the next event message. The asynchronous method requires
the calling application to pass a pointer to a Callback function as a parameter to the
transaction’s Begin function call. The FAS will in turn call the Callback function with event
messages at the time the event message is produced (asynchronous to the calling
application’s process execution). The application’s Callback function provides the code
necessary to process the various event messages. A call to Release the message must also
be included in the callback procedure.

There is an advantage to using the asynchronous event message processing method instead
of the synchronous event message processing method. Asynchronous event message
processing allows the calling application to initiate a transaction and continue with its normal
path of execution. The main application remains free for processing other tasks during the
open transaction. However, it is not always possible to correctly implement the required
Callback function necessary to enable the asynchronous method. The synchronous method
requires the thread of the calling application to loop while polling for event messages during
the open transaction. This method makes it more difficult for the application program to
execute other tasks, such as user input, in between event message processing.

An application can prematurely terminate an in-progress transaction by calling the API
FLAbortTransaction function from the High Performance API.

The basic operational flow for the two modes is described in the following sections.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 22

The Fingerprint Services API

API Function Calls
The functions in the Fingerprint Services API group are shown below.

• FLGetImageBufferSize - This function retrieves the buffer size required to store
a scanned image that will be returned from the FLEndAcquireImage API
function.

• FLGetOSBmpHeaderSize – This function retrieves the buffer size required to
store a bitmap header used to describe characteristics of a displayable fingerprint
image.

• FLBuildOSBmpHeader – This function creates a valid bitmap header by filling
the contents of a pre-allocated buffer of size equivalent to that which was returned
by a call to FLGetOSBmpHeaderSize.

• FLBeginAcquireImage – This function initiates an operation (transaction) to
acquire a fingerprint image for a finger placed on the sensor.

• FLEndAcquireImage – This function retrieves the fingerprint image from an
Acquire Image operation once the FAS signals that the results are available.

• FLGetMatchTemplateSize – This function retrieves the buffer size required to
store a match template.

• FLBuildMatchTemplate – This function creates a match template for the
fingerprint described by an image returned by FLEndAcquireImage. The
resulting fingerprint template is stored in a pre-allocated buffer of size equivalent
to that which was returned by a call to FLGetMatchTemplateSize.

• FLGetReferenceTemplateSize – This function retrieves the buffer size required
to store a large reference template.

• FLGetSmallReferenceTemplateSize – This function retrieves the buffer size
required to store a reduced size, or small, reference template.

• FLConvertNormalReferenceTemplateToSmall – This function converts a
normal, or large reference template to a reduced size, or small, reference
template.

• FLBuildReferenceTemplate – This function creates a reference template for the
fingerprint described by an image returned by FLEndAcquireImage. The
resulting fingerprint template is stored in a pre-allocated buffer of size equivalent
to that which was returned by a call to FLGetReferenceTemplateSize.

• FLMatchTemplatePair
Compares a reference template to a match template and returns a result to
indicate that the two templates match the same finger.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 23

• FLMatchTemplatePairEx – This function compares a reference template to a
match template and returns a result to indicate that the two templates match the
same finger. In addition the function returns the quality scoring values that were
used to make the match.

• FLReleaseMessage - This function releases (deletes) the memory space
allocated by a valid message that was returned by a previous call to
FLContinueTransaction while operating in synchronous mode or a message
that was received by a callback function while operating in asynchronous mode.

• FLAbortTransaction – This function aborts the current operation (transaction)
and returns the FAS to an idle state. Calling this function will abort any operation
(transaction) currently in progress. This function requires the transaction ID that
was returned by the operation originally initiated with a Begin function call.

The functions in this group are listed alphabetically and described in detail in the “API
Reference” section of this manual.

Event Messages

Event messages are passed throughout the system using a pointer to a tsFL_API_MSG event
message structure as shown below. The first member of the event message structure contains
the message type. The second parameter contains the sub-message number for the
respective message type. Only a few message types actually have a sub-message number.
The third parameter contains a pointer to the actual message data. This data depends upon
the message type. For example, if the message type is an FL_API_NEW_DISPLAY_IMAGE,
the pMessageData pointer points to a buffer that contains a raw fingerprint image that can be
formatted and displayed by the calling application. Details of the message types, sub-message
numbers and message data information can be found in the header file FLStdPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 24

The table below outlines the various message types that can be expected when processing
event messages.

typedef struct
{
uint16 uiMessageType ;
uint16 uiSubMessageNum ;
void* pMessageData ;
} tsFL_API_MSG;

MESSAGE TYPE DESCRIPTION

FL_API_NEW_DISPLAY_IMAGE The sensor has a new image to be displayed.
FL_API_CLEAR_DISPLAY_IMAGE Clear the last displayed image.
FL_API_NEW_STATE_TEXT The state of the sensor has changed - display a new text

message.
FL_API_CLEAR_STATE_TEXT The sensor state message text is no longer valid.
FL_API_PLAY_PROMPT_SOUND Play sound for action done, end of capture, capture

reject, and so on.
FL_API_NEW_PROMPT_TEXT Prompt the user for a finger action.
FL_API_CLEAR_PROMPT_TEXT Remove any user prompts from the display.
FL_API_ACQUIRE_DATA_RDY The Acquisition transaction has the final data ready.
FL_API_ENROLL_DATA_RDY The Enroll transaction has the final data ready.
FL_API_VALIDATE_DATA_RDY The Validation transaction has the final data ready.
FL_API_VERIFY_DATA_RDY The Verification transaction has the final data ready.
FL_API_IDENTIFY_DATA_RDY The Identification transaction has the final data ready.
FL_API_END_OF_VIEW The finger has been lifted from the sensor.
FL_API_TIMEOUT The transaction was canceled due to a timeout.
FL_API_IDLE_50 API has been idle for 50 milliseconds.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 25

Synchronous Operation Implementation

The application first responds to the user’s request for Enrollment or Identification services. It
then collects the information needed for the specified operation. This may include the user’s
name, an ID, the finger to process, or any other data the application requires.

The application then passes the data as parameters to the appropriate Begin function which in
turn returns a Transaction ID that must be saved for later use. The application then polls the
FAS for event messages by calling the FLContinueTransaction function. If an event
message is available the application processes it. If no event message available the
application simply sleeps for a short duration (10 to 100 milliseconds) and then calls
FLContinueTransaction again to make another request for an event message.

Event messages such as FL_API_NEW_DISPLAY_IMAGE, FL_API_NEW_STATE_TEXT,
FL_API_NEW_PROMPT_TEXT, and so on, will be returned throughout the open operation
(transaction). Eventually an FL_API_XXXXXX_DATA_RDY or an FL_API_TIMEOUT event
message will be sent to indicate that the operation has completed or that the operation or has
timed out due to lack of user interaction with the sensor. If the FL_API_XXXXXX_DATA_RDY
event message is sent the application must call the balancing End function to gracefully end
the transaction in progress. It is not necessary to call the End function if the transaction has
been canceled by an FL_API_TIMEOUT event message.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 26

Asynchronous Operation Implementation

The application first responds to the User’s request for Enrollment or Identification services. It
then collects the information needed for the specified operation. This may include the user’s
name, an ID, specification of the finger to process, or any other data the application requires.

The application then sets up any global information needed by the Callback routine. The
Callback function’s address is passed as a parameter to the appropriate Begin function which
in turn returns a Transaction ID that must be saved for later use.

The Begin function starts the operation (transaction) and returns to the application where the
calling thread is then free to continue with normal idle loop execution. Through the transaction
process the FAS asynchronously calls the application’s callback function with event messages
such as FL_API_NEW_DISPLAY_IMAGE, FL_API_NEW_STATE_TEXT,
FL_API_NEW_PROMPT_TEXT, and so on.

Eventually an FL_API_XXXXXX_DATA_RDY or an FL_API_TIMEOUT event message will
be sent to indicate that the operation has completed or that the operation or has timed out due
to lack of user interaction with the sensor. If the FL_API_XXXXXX_DATA_RDY event
message is sent the application must call the balancing End function to gracefully end the
transaction in progress. It is not necessary to call the End function if the transaction has been
canceled by an FL_API_TIMEOUT event message. Once the Callback is executed with a
message indicating the transaction has finished, it notifies the idle loop of the application (using
some type of signal or global variable) that the result is waiting.

The pointer version of the Callback function below is prototyped in the FLStdApi.h header file
along with the definitions for the API messages.

Asynchronous callback function:

void FL_Notify_Callback (uint32 uiCallerDWord, tsFL_API_MSG*pApiMsg);

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 27

The Fingerprint Services API

Application Example
A complete sample application that uses the Fingerprint Services API is available in the
FLServicesAPIDemo sub-directory. A step-by-step illustration of how to handle the
Enrollment functionality in an asynchronous manner, is shown in the following diagram:

FingerLoc System Applications Program

Enroll Transaction thread - Async callback form

End Enroll

Create
template

Create
Template

To ext.
Fp. db

Begin enroll
process

Optional User
Feedback

Optional User
Feedback

Get the final
image

Process
 image
data

Optional
Image Display

Start
Imaging

Detected
Finger

Acquire
Image

Analyze
Image

Analyze
Features

End Acquire
Image

Start
Enroll

Place finger

Begin Acquire Image()

Finger Detected

End Acquire Image()

Return Acquired Image

New Display Image

Acquired Image ready

View complete

- No Core
- Lift and center

Build ReferenceTemplate() Acq. Image

Return Reference Template

FingerLoc System - Fingerprint Services API

Enroll
Display

L1

L2

L3

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 28

The Convenience API
The Convenience API is an implementation in which the FAS provides it’s own Graphical User
Interface objects, such as feedback windows and interactive user dialog box controls, during
primary operations such as Enrollment, Identification, and so on. For this reason, the
Convenience API allows a means to quickly construct demonstrations directly from
applications in order to evaluate the FingerLoc sensor IC.

Most developers will want to replace the functionality provided by this group of API functions
with that of either the High Performance API or the Fingerprint Services API for the final
product.

The Convenience API is designed to provide a calling application with a suite of functions that
will maximize use of the Dynamic Optimization features available in the FingerLoc sensor IC
during finger scanning operations. Additionally, the Convenience API provides start-to-finish
automated control of the primary processes, such as Enrollment, Verification, and Identification
once the process has been initiated by the calling application. The Convenience API provides
the following functionality:

♦ Enrollment (creation of reference templates) of a User’s fingers.

♦ Identification to look up which, if any, User stored in the internal database belongs to
a finger on the FingerLoc sensor IC.

♦ Validation that the finger on the sensor belongs to a specified User according to the
specified User’s template stored in the internal database.

♦ Verification that a finger on the FingerLoc sensor IC matches that of a fingerprint
template stored in an external template passed in.

The automation features of the Convenience API makes it unnecessary for the calling
application to manipulate any type of low level sensor objects such as collecting raw fingerprint
images, or creating reference or match templates. Fingerprint templates created by the
Convenience API Enrollment process are always stored in the internal FingerLoc database,
and additionally, exported to the calling application for optional external storage. Identification,
Validation, and Verification operations can be called once a finger has been enrolled.

The application accomplishes Enrollment simply by calling the enroll function of the API and
passing it the desired user and finger ID information. The FAS automatically displays a window
on the computer display that guides the user through the enroll process. Fingerprint images
produced by the scanning process are displayed to the user on a small child window
embedded inside the larger interface screen. Control is returned to the calling application when
the actual enroll API interface function returns. Unlike the High Performance API and the
Fingerprint Services API, the Convenience API does not supply the calling application with any
type of event messages. The result of an operation is determined by the value returned by the
called function.

Identification, validation, and verification are accomplished in a similar manner. The application
simply calls the desired API function while passing the necessary information and the FAS

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 29

automatically executes the entire operation. The FAS displays and controls all necessary user
interface mechanisms.

The Convenience API does not provide options to customize the user interfaces and should
only be used where it’s design would be beneficial to meeting the goals of the solution.

The Convenience API

Theory of Operation
Unlike the High Performance and Fingerprint Services API, the Convenience API is not
transaction-based. As described in the preceding section, operations are initiated by calling the
appropriate function in the API. Once initiated, control is never returned to the calling
application until the operation is complete and the function returns.

Source code in the sample test program, FingerLocAPIDemo demonstrates usage of the
Convenience API.

The Convenience API

API Function Calls
The functions in the Convenience API group are shown below.

• FingerLocEnroll – This function causes the FAS to execute a complete process
to enroll the desired finger for a User.

• FingerLocIdentify – This function causes the FAS to execute a complete
process to look up which, if any, User stored in the internal database belongs to a
finger on the sensor.

• FingerLocValidateID – This function causes the FAS to execute a complete
process to confirm that the User that belongs to the finger placed on the
FingerLoc sensor IC matches the user with the same user ID that is stored in the
internal database.

• FingerLocValidateFingers - This function causes the FAS to execute a
complete process to confirm that the finger placed on the FingerLoc sensor IC
matches the fingerprint template passed into the function from an external
database.

Note: Each of the Convenience API functions require a special handle to be
passed as a parameter. This handle is obtained by calling the FingerLocInit
function as described in the “Utility and Common API” section of this manual.

The functions in this group are listed alphabetically and described in detail in the “API
Reference” section of this manual.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 30

The Image Capture API
The functions of the Image Capture API provide support for applications that have their own
built-in fingerprint matching capability. The API provides several functions that allow the calling
application to acquire a raw fingerprint image from the FingerLoc sensor IC in addition to
obtaining information such as the presence of a finger on the sensor. The Image Capture API
does not make use of any Dynamic Optimization capabilities of the FingerLoc sensor IC. As a
result, fingerprint images returned by the Image Capture API will be generally inferior in quality
to those returned using the Image Acquisition functions of the Fingerprint Services API. The
FLBeginAcqureImage - FLEndAcquireImage function pair of the Fingerprint Services API
should be used in most situations. This API is included for backward compatibility.

The Image Capture API

API Function Calls
The functions in the Image Capture API group are shown below.

• FingerLocOpenStream – This function instructs the FAS to enable imaging mode.
Fingerprint images will be available whenever a finger is placed on the FingerLoc
sensor IC. Retrieve the actual fingerprint images by calling the
FingerLocGetCurrentImage function. This function can not be used simultaneously
when making calls to the High Performance API or the Fingerprint Services API.

• FingerLocCloseStream – This function instructs the FAS to disable imaging mode.
This function can not be used simultaneously when making calls to the High
Performance API or the Fingerprint Services API.

• FingerLocGetCurrentImage – This function retrieves a fingerprint image from the
FAS when an image is available. Use the FingerLocGetImageState function to
determine that a finger has been placed on the FingerLoc sensor IC and that a valid
image is available for retrieval. The image is placed into a buffer that is allocated by
this function. This buffer must be destroyed using the FingerLocReleaseImage
function when finished with the image. This function can not be used simultaneously
when making calls to the High Performance API or the Fingerprint Services API.

• FingerLocReleaseImage – This function releases the buffer created by
FingerLocGetCurrentImage. Call this function when finished using the image data.
This function can not be used simultaneously when making calls to the High
Performance API or the Fingerprint Services API.

• FingerLocGetImageState – This function returns information that indicates if there is
a finger on currently on the FingerLoc sensor IC and that there is a valid image
available for retrieval.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 31

Note: Each of the Image Capture API functions require a special handle to
be passed as a parameter. This handle is obtained by calling the
FingerLocInit function as described in the “Utility and Common API” section
of this manual.

The functions in this group are listed alphabetically and described in detail in the “API
Reference” section of this manual.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 32

The Utility and Common API
The Utility and Common API provides the programmer with several commonly needed utility
functions. Functions for image re-sampling, image format conversion, database manipulation,
program initialization, sensor communication control, and error reporting are included.

The Utility and Common API

API Function Calls
The functions in the Utility and Common API group are shown below.

• FingerLocResample150 – This function magnifies a square input image by a factor
of 1.5. For example, a 128 x 128-pixel input image results in a 192 x 192-pixel image.

• FingerLocResample200 – This function magnifies a square input image by a factor
of 1.5. For example, a 128 x 128-pixel input image results in a 192 x 192-pixel image.

• FingerLocAllocOSBitmap – This function allocates a block of buffer memory the
size of a Windows bitmap information structure. The buffer is then filled with the
proper information necessary to describe a 144 x 144-pixel bitmap, including the RGB
look-up table.

• FingerLocDeleteOSBitmap – This function destroys a memory buffer allocated with
the FingeLocAllocOSBitmap function.

• FingerLocConvertRawImageToOSBmp – This function converts a raw eight-bit
gray scale 128 x 128-pixel raw scanned image into an eight-bit gray scale 144 x 144-
pixel Windows bitmap.

• FingerLocGetLeds – This function retrieves the state of each of the four user-
programmable outputs located on the FingerLoc sensor IC (each capable of driving
an LED).

• FingerLocSetLeds – This function sets the state of any one of four general-purpose
user-programmable outputs located on the sensor (each capable of driving an LED).

• FLGetCommPort – This function retrieves information regarding the current
hardware port settings used to communicate with the sensor.

• FLReadCommPort – This function reads a stream of bytes from the communication
port.

• FLWriteCommPort – This function writes a stream of bytes directly to the
communication port.

• FLReleaseCommPort – This function releases control of the serial communications
port.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 33

• FLRestartCommPort – This function instructs the FingerLoc server to restart the
communication port using the current settings.

• FingerLocGetVersion – This function retrieves the type and version of the sensor,
FingerLoc server, and associated FingerLoc DLLs.

• FingerLocInit – This function initializes the FAS and returns a context handle that is a
required parameter with various functions. The context handle returned from this
function is only required by a few API operations. Do not call this function unless a
handle is actually required.

• FingerLocClose – This function closes an initialized FAS originally initiated with the
FingerLocInit function.

• FingerLocGetNextUser – This function retrieves the information regarding the next
User stored in the internal FAS database. The function can either start from the
beginning of the database or from a specified User. Call this function in a loop to build
a list of Users ID and associated Display Names.

• FingerLocGetResultDetails – This function retrieves information regarding the last
error that occurred in the FAS. Call this function in response to an API function failure.
The error code is cleared when this function is called, but that does not mean that the
actual error condition that caused the fault will be cleared. A list of error codes is found
in the file FLStdApi.h.

The functions in this group are listed alphabetically and described in detail in the “API
Reference” section of this manual.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 34

Event Messages, Error Codes, and Return Codes
This section describes the messages and return value enumerations in use in this version of
the API. The latest defines are found in the FLStdApi.h header file.

Event Messages
Event messages are returned when using either the High Performance or Fingerprint Services
APIs (see the respective sections within this manual for detailed information regarding the
APIs). The FLStdApi.h contains details regarding the various API event messages and their
usage.

Error codes
All error codes are negatively numbered. If the return received from either an API call or from
the FingerLocGetResultDetails function is negative, this indicates that there has been an
error somewhere in the FAS. Refer to the FLStdApi.h file for up-to-date definitions of error
codes. The errors are listed below.

FL_FUNCTION_FAILED // Generic error
FL_INITALIZE_FAILED // Startup error
FL_OUT_OF_MEMORY // Could not allocate memory block
FL_INVALID_CONTEXT // Context handle is invalid
FL_COMM_ERROR // Communications error
FL_OS_ERROR // Operating system error
FL_INVALID_KEY_SIZE
FL_UNSUPPORTED_IMAGE_RESOLUTION
FL_INVALID_IMAGE_RESOLUTION
FL_INVALID_FRAME_RATE
FL_INVALID_ARGUMENT
FL_FUNCTION_NOT_SUPPORTED
FL_BAD_HANDLE
FL_BAD_POINTER
FL_INVALID_CRC
FL_STREAM_CLOSED
FL_STREAM_OPENED
FL_HEAP_BAD
FL_STACK_UNDERFLOW
FL_DATASTORE_ERROR
FL_FILE_BUSY

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 35

Return Codes
Return codes are positively numbered. These codes are used to indicate the results of the
various API calls. Refer to the FLStdApi.h file for up-to-date definitions of error codes. Refer to
the various API function calls for details on what the various return codes mean when used
within the respective functions.

FL_OK // function succeeded
FL_UNKNOWN // desired user not found in internal database
FL_MATCH // the finger on the sensor matches
FL_NO_MATCH // the finger on the template does not match
FL_USER_ALREADY_ENROLLED
FL_NO_IMAGE
FL_USER_CANCELED
FL_MAX_USER_FINGERS_ENROLLED
FL_IMAGE_RDY
FL_BAD_IMAGE
FL_TIMEOUT
FL_FILE_NOT_FOUND
FL_FINGER_PRESENT

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 36

The High Performance API Demonstration
An application called the FLHighPerformanceAPIDemo is delivered with the Software
Developer’s Kit. Not surprisingly, it demonstrates the use of the FingerLoc High Performance
API. It exercises the major operations provided by the API in both the polled and callback
modes that are described elsewhere in this document.

An executable demonstration application and full C++ source code for the demonstration are
provided. The source code provides an example of how the High Performance API calls are
used together to enroll or match fingerprints in the FingerLoc database.

The High Performance API Demonstration

Description
Six options are provided on the Main Menu Bar:

File
Exit Close and return to the desktop.

Enroll User
Polled
Callback

Validate User ID
Polled
Callback

Verify Template
Identify User
Help

About… Display copyright information about FingerLoc Aware.

♦ The File option allows the application to be terminated, just as if selecting the close
box on the title bar.

♦ The Enroll User option allows a User to be placed in the FingerLoc database.

♦ The Validate User ID option provides a one-to-one match with a User record in the
database.

♦ The Verify Template option provides a one-to-one match between the last enrolled
finger and the next finger placed on the FingerLoc sensor IC.

♦ The Identify User option provides a “one-to-many” match of the next finger placed on
the FingerLoc sensor IC against all fingers in the FingerLoc database.

♦ The Help option shows the standard Help dialog box.

The Main Window contains four sections. Just below the Main Menu Bar, is a Progress Bar
that indicates the progress of an Enrollment process. To the left and below the Progress Bar is
a gray Image Window that displays images from the sensor. To the right of the Image Window

 2060 Rev 1.5 (15AUG00)

Programmer’s Refere

is a Message Display Window that displays informational messages. Across the bottom of the
Main Window is the Prompt Window that displays instructional messages to aid a user in finger
positioning during enrollment and matching. The following paragraphs describe the use of
each option in more detail.

Fi

Se

En

Se
“C
me
im

W
fol
inf

Ty
fin

Fig
pro
Progress Bar
nce Manual for Microsoft Windows

le

lection of the File option allows only one subsequent

roll User

lect the Enroll User option to see a pull-down list with
allback”. From the perspective of someone using FLH
thods appear to work the same. Exact differences wi

plementation discussions.

hen an Enrollment is initiated, a name for the user and
lowing illustration shows the User Identification dialo
ormation.

pe a unique User Name in the Name text field, then c
ger to be enrolled. Click OK to continue the enrollmen

ure 6 shows the continuation of the Enrollment proce
mpting the user to place the selected finger on the Fi

ww
Main Menu Bar
w
Prompt Windo

ope

 tw
igh
ll be

 a
g b

lick
t, o

ss
nge
Message Windo
Image Windo
 37

ration, Exit from the program.

o selections, “Polled” and
PerformanceAPIDemo both
 detailed later during

finger specification is required. The
ox that is used to collect this

 an adjacent button to specify the
r Cancel to end the process.

with the demonstration application
rLoc sensor IC. Of course, it will

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 38

accept a different finger, but the finger on the sensor will be permanently identified in the
database as the one selected.

Place a finger on the FingerLoc sensor IC to capture an image and evaluate it. The image is
displayed, a message and a prompt are displayed, and the progress indicator is updated.

Removing the finger from the FingerLoc sensor IC updates the windows again indicating that
FLHighPerformanceAPIDemo has detected that the finger has been removed and still
prompts the user to place the finger back on the sensor as shown in Figure 5

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 39

A total of three views of the finger will be taken, from which only the one with the best
characteristics will be saved in the database. If the enrollment is successful, the dialog box
shown in Figure 6 is displayed (the lkli is replace with the user name), thus completing the
enrollment.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 40

Validate User ID

Selection of the Validate User ID option creates a pull-down list with two selections, Polled
and Callback. From the perspective of someone using FLHighPerformanceAPIDemo, both
methods appear to work the same. Exact differences will be detailed later during
implementation discussions.

Once the running method (Polled or Callback) is selected, the User Identification dialog box
is displayed to select which User Id is to be validated. Once the Name has been entered, a
single view of the fingerprint is taken.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 41

If the template created from the fingerprint matches the template from the database for the
selected User Id the user access is accepted, otherwise the user access is rejected.

Verify Template

Selection of the Verify Template option creates a pull-down list with two selections, Polled and
Callback. From the perspective of someone using FLHighPerformanceAPIDemo both
methods appear to work the same. After the running method is selected, the Verify Template
option performs a one-to-one match of the last enrollment template created from the Enroll
User option against a template created from the next fingerprint seen. The results of the
matching process are the same as for the Validate User Id, acceptance or rejection.

Identify User

Selection of the Identify User option creates a pull-down list with two selections, “Polled” and
“Callback”. From the perspective of someone using FLHighPerformanceAPIDemo both
methods appear to work the same. After the running method is selected, the Identify User
option performs a many-to-one match of all users that have been saved in the Datastore
against a template created from the next fingerprint seen. The result of the matching process is
the same as for the Validate User Id, acceptance or rejection.

Help

The Help option displays the standard Windows application Help dialog box.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 42

The High Performance API Demonstration

Implementation
The FLHighPerformanceAPIDemo application is built using the Microsoft® Visual Studio
version 6.0 Development System. It uses MFC without the Document/View architecture. The
source code for this program is provided with the Software Developer’s Kit.

FLHighPerformanceAPIDemo acts as the interface between the user and the TruePrint
Server. Communication with the server is handled by calls through the FLRpc.dll. The server
performs the control and sequencing for each operation. FLHighPerformanceAPIDemo
displays image processing messages and user prompts and informational text messages
generated by the server. It monitors the state of each operation to determine what should be
done next.

The FLHighPerformanceAPIDemo can perform each operation in Polled or in Callback
mode. The Polled mode code for each operation is much like the following code that conducts
an enrollment. The call to FLBeginEnroll() notifies the server that an enrollment process is
starting. The server conducts the enrollment by monitoring the number of times a finger has
been placed on the sensor.

The server relays images, prompt, and informational messages to
FLHighPerformanceAPIDemo through the call to FLContinueTransaction(). Each call to
FLContinueTransaction() retrieves one message. While the operation is not complete and a
timeout has not occurred and the user has not cancelled the operation, call
DoProcessFLMessage() to process the last message retrieved. If a message was retrieved,
process it otherwise pause to allow other processes to have CPU. If the last message received
was one that indicates that the operation is complete and that the results of the operation are
ready, do not process any more messages (bImageAvailable will be set by
DoProcessFLMessage() so the While loop will terminate).

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 43

uiCurrentID = FLBeginEnroll(NULL,

uiCallerDWord,

&MatchingCriteria,

&UserId,

UserInfo.m_iFinger,

&uiMaxEnrollTemplateSize);

while(!bDone && !bTimeOut && !bImageAvailable)

{

uint16 iRetMsgId = DoProcessFLMessage(Msg);

if (iRetMsgId != FL_API_ENROLL_DATA_RDY &&

iRetMsgId != FL_API_VALIDATE_DATA_RDY &&

iRetMsgId != FL_API_VERIFY_DATA_RDY &&

iRetMsgId != FL_API_IDENTIFY_DATA_RDY &&

!bDone)

{

// If no message wait a bit and try again

Msg = FLContinueTransaction(uiCurrentID);

if(Msg == NULL)

Sleep(100);

}

}

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 44

The Callback approach passes the address of the Callback routine to the FLRpc.dll when an
operation is initiated.

uiCurrentID = FLBeginEnroll(DoAsyncCallBack,
uiCallerDWord,
&MatchingCriteria,
&UserId,
UserInfo.m_iFinger,
&uiMaxEnrollTemplateSize);

pseudoThis = this;

The Callback routine calls DoProcessFLMessage() to process each message that FLRpc.dll
passes to it.

Note: The Callback function is not a member of any class because that
would violate C++ conventions. Therefore it does not have access to the C++
this pointer

To allow the Callback routine to call a function that is a class member, a static
variable named pseudoThis is set to the C++ this pointer. A reference to the
pseudoThis pointer allows the Callback to call a member function
DoProcessFLMessage();

static void DoAsyncCallBack(unsigned long val,tsFL_API_MSG *Msg)
{

if (pseudoThis != (CMainFrame *)NULL)
pseudoThis->DoProcessFLMessage(Msg);

}

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 45

The heart of the FLHighPerformanceAPIDemo is the function DoProcessFLMessage(). It
processes the messages returned from the server for all operations.

switch(uiMessageType)
{
case FL_API_NEW_DISPLAY_IMAGE:

// new fingerprint image is available so display it in the
// window
break;

case FL_API_CLEAR_DISPLAY_IMAGE: // Clear the last displayed scan
// clear the image window
break;

case FL_API_NEW_STATE_TEXT:
// set new text in the state window
break;

case FL_API_CLEAR_STATE_TEXT:
// clear the state window
break;

case FL_API_PLAY_PROMPT_SOUND:
// Play sound for action done, end of capture, capture
//reject, etc.
// play a sound - pMessageData contains name of file to
//play
break;

case FL_API_NEW_PROMPT_TEXT:
// place new prompt in prompt window
break;

case FL_API_CLEAR_PROMPT_TEXT:
// clear prompt window
break;

case FL_API_ACQUIRE_DATA_RDY:
case FL_API_ENROLL_DATA_RDY:
case FL_API_VALIDATE_DATA_RDY:
case FL_API_VERIFY_DATA_RDY:
case FL_API_IDENTIFY_DATA_RDY:
// The current transaction has the final data ready.

// mark data available
break;

case FL_API_END_OF_VIEW:
// during enroll, process end of view messages and display
//prompt and state messages
switch(Msg->uiSubMessageNum)
{
case FL_API_NO_CORE:

break;
case FL_API_LIFT_AND_CENTER:

break;
case FL_API_LIFT_AND_REPLACE:

break;
case FL_API_LAST_VIEW:

break;
}
break;

case FL_API_TIMEOUT:
break;

}

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 46

As can be seen from the preceding code fragment, there are both main and a sub-message
types. The main message type is used by the server to signal to
FLHighPerformanceAPIDemo that it must perform some action on the behalf of the server.
These actions include displaying an image or prompting the user to reposition a finger on the
sensor in response to these messages.

The sub-message is used during an enrollment operation to signal what user message needs
to be presented to the user to get the user to place a finger on the FingerLoc sensor IC and
remove the finger from the sensor a number of time times. The multiple views taken give the
server a much better possibility of a later match.

The remainder of the code that makes up the FLHighPerformanceAPIDemo is standard
MFC code and glue and will not be further described.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 47

API Reference
This section contains detailed information on the available API functions in the FAS. This
material is arranged in alphabetical order by function name.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 48

FingerLocAllocOSBitmap
The Utility and Common API

FingerLocAllocOSBitmap(
int16 iPixelCount)

FingerLocAllocOSBitmap creates and initializes a Device-Independent Bitmap (DIB). The
memory for the DIB is allocated, the header and the color lookup table are filled out and the
pixel values initialized to zero. A DIB begins with a BITMAPINFOHEADER structure followed
by a color lookup table, which is then followed by image data.

The function FingerLocDeleteOSBitmap() is called to release the memory allocated by this
function.

Parameters

PARAMETER DESCRIPTION

iPixelCount The dimension in pixels of the image data. The image is assumed
to be square.

Returns

A pointer to allocated bitmap upon success, NULL upon error.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 49

FingerLocClose
The Utility and Common API

FingerLocClose(
FL_CONTEXT_HANDLE ContextHnd)

FingerLocClose closes the FingerLoc sub-system that was previously opened by a call to the
FingerLocInit() function.

Parameters

PARAMETER DESCRIPTION

ContextHnd The context handle originally returned by FingerLocInit().

Returns

FL_OK The operation was successful.

FL_INVALID_CONTEXT The operation did not complete successfully - the handle
passed was not correct.

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 50

FingerLocCloseStream
The Image Capture API

FingerLocCloseStream(
FL_CONTEXT_HANDLE ContextHnd)

FingerLocCloseStream terminates the Image Capture operation started by
FingerLocOpenStream.

Parameters

PARAMETER DESCRIPTION

ContectHnd The context handle returned by FingerLocInit()

Returns

FL_OK Normal return, system is no longer in image streaming
mode.

FL_STREAM_CLOSED The image stream was already closed.

FL_INVALID_CONTEXT Operation failed - the context handle was invalid

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 51

FingerLocConvertRawImageToOSBmp
The Utility and Common API

FingerLocConvertRawImageToOSBmp(
BITMAPINFO* pNewDib
uint8* pPixelData,
uint16 iImageSize)

FingerLocConvertRawImageToOSBmp moves a linear block of pixels, one byte per pixel, into a
bitmap object. It is assumed that the upper BITMAPINFO portion of the bitmap object is filled
in and describes the output image. Use FingerLocAllocOSBitmap() to allocate and set up
the correct bitmap object. If the output image is larger than the input image, the input image is
centered within a border of zeroes. The rows of the input image are written to the output image
in reverse order.

Parameters

PARAMETER DESCRIPTION

pNewDib A pointer to an allocated bitmap object.

pPixelData A pointer to an input buffer with raw image pixel data.

iImageSize The size of the input image. The image is assumed to be square.

Returns

A pointer to allocated bitmap upon success, NULL upon error.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 52

FingerLocDeleteOSBitmap
The Utility and Common API

FingerLocDeleteOSBitmap(
BITMAPINFO* pBitmap)

FingerLocDeleteOSBitmap deletes a memory buffer allocated by
FingerLocAllocOSBitmap().

Parameters

PARAMETER DESCRIPTION

pBitmap A pointer to the Device-Independent Bitmap allocated by
FingerLocAllocOSBitmap().

Returns

TBD.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 53

FingerLocDeleteUser
The Utility and Common API

FingerLocDeleteUser(
tsFL_ID_INFO* pUserID)

FLRestartCommPort removes identification and fingerprint data for a given user from the
FingerLoc database.

Parameters

PARAMETER DESCRIPTION

pUserID A pointer to a tsFL_ID_INFO structure specifying the user to be
removed.

Returns

FL_OK The user data was removed.

FL_NO_MATCH The specified user does not exist in the database

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 54

FingerLocEnroll
The Convenience API

FingerLocEnroll(
tsFL_ID_INFO* pUserID
uint16 uiFingerToEnroll
void* pTemplatePtr
int16 iTemplateStorageSize
int16* piTemplateResultSize
tsFL_MATCH_CRITERIA* pMatchSetup)

In the enrollment mode, FingerLocEnroll displays a window to guide the user through the
enrollment process. This function controls the user interface, including image feedback
windows, message boxes, and dialog boxes during enrollment. The function blocks (does not
return to the caller) until the enrollment process is complete.

This function can also be used to obtain the size of an enrollment template by passing NULL
values for the both the pointer to the enrollment user information and the pointer to the return
template buffer. To receive the reference template for an enrollment, an application typically
calls this function to obtain the size of a reference template, allocates memory for the template,
and then calls the function again in enroll mode.

Parameters

PARAMETER DESCRIPTION

pUserID A pointer to an allocated tsFL_ID_INFO structure that specifies the
user to enroll. If NULL, no enrollment data is stored in the
FingerLoc database.

uiFingerToEnrollL Specifies the number of the finger being enrolled (1 through 10).

pTemplatePtr A pointer to an allocated buffer used to return the reference
template. If NULL, no template data is returned to the calling
program.

iTemplateStorageSize The size of the allocated template buffer passed in during
enrollment. Must be set to zero during template size return.

piTemplateResultSize A pointer to a variable used to return the size of an enroll template.
This value is returned when both pUserID and pTemplatePtr are
NULL.

pMatchSetup Not used.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 55

FingerLocEnroll (continued)

Returns

FL_NO_MATCH The finger on the sensor was enrolled, the reference
template was saved to the FingerLoc database and written
to the supplied buffer.

FL_MAX_USER_FINGERS_ENROLLED
User was not enrolled - insufficient memory was available.

FL_FUNCTION_FAILED A system failure occurred - an error has resulted or could
not communicate with the FingerLoc server.

FL_OUT_OF_MEMORY The User was not enrolled - insufficient memory was
available to perform the enrollment operation.

NO_FINGER_IMAGE The User was not enrolled - a valid fingerprint was not
acquired.

FINGER_NO_CORE The User was not enrolled - could not determine a required
core within the finger image.

FL_USER_CANCELED The User canceled the operation.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 56

FingerLocGetCurrentImage
The Image Capture API

FingerLocGetCurrentImage(
FL_CONTEXT_HANDLE ContextHnd,
CONST int16 iOutputDPI,
CONST BOLL bInvertImage)

FingerLocGetCurrentImage returns an image during Image Capture mode. This function
allocates a buffer, places the image to be returned into the buffer and returns a pointer to the
buffer. A NULL pointer is returned if no image is available. The application must call
FingerLocReleaseImage() to free the image buffer, each time this function returns a non-
NULL pointer.

The image is returned as a linear array of bytes, one byte per pixel, with a gray-level value in
the range of 0-255. The bytes are in row-order beginning with the top row. The number of rows
and columns is based on the specified image density (128, 192, or 256 DPI).

Parameters

PARAMETER DESCRIPTION

ContectHnd The context handle returned by FingerLocInit().

iOutputDPI Dots-per-inch (DPI) density requested for the returned image,
IMAGE_250_DPI (default sensor size 128x128 pixels),
IMAGE_375_DPI (192x192 pixels), IMAGE_500_DPI (256x256
pixels).

bInvertImage If TRUE, the image data is inverted so that black pixels are output
as white and white pixels are output as black.

Returns

A pointer to a buffer that holds the current image if an image is available or NULL if no image is
currently available (wait, then call function again).

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 57

FingerLocGetImageState
The Image Capture API

FingerLocGetImageState(
FINGERLOC_HANDLE hContext
tsFL_IMAGE_STATE* psImageState)

FingerLocGetImageState is used to determine if the FAS has detected a finger on the sensor
surface.

Parameters

PARAMETER DESCRIPTION

hContext This is an obsolete parameter. It is preserved for backward
compatibility only. All new implementations should pass NULL for
this parameter.

psImageState A pointer to an allocated tsFL_IMAGE_STATE structure for the
returning image state.

Returns

FL_OK Normal return

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 58

FingerLocGetLeds
The Utility and Common API

FingerLocGetLeds(
uint32* pRtnLedState)

FingerLocGetLeds retrieves the state of the sensor’s general-purpose outputs (“LED”) bits.

Parameters

PARAMETER DESCRIPTION

pRtnLedState A pointer to the value to be filled upon successful return. Only the
low four bits of the data are used. Definitions of the LED bits and
the names are in the file FLStdAPI.h.

Returns

FL_OK Normal return.

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 59

FingerLocGetNextUser
The Utility and Common API

FingerLocGetNextUser(
FINGERLOC_HANDLE pContext
/tsFL_ID_INFO* pRtnIdInfo)

FingerLocGetNextUser retrieves the tsFL_ID_INFO structure of the next user in the
FingerLoc database. If the iUserId member of the tsFL_ID_INFO structure is NULL, data is
returned for the first user in the database. Otherwise, if this member is the ID of an enrolled
user, this function will overwrite the data in the user information structure with that of the next
user stored in the FingerLoc database.

If the specified user is the last user in the database, FL_OK is returned and NULL strings are
written to the user information structure.

Parameters

PARAMETER DESCRIPTION

pContext A pointer to the context.

puiStatusInfo A pointer to the allocated tsFL_ID_INFO structure used for input
and output data.

Returns

FL_OK Normal return.

FL_USER_NOT_FOUND The specified user was not found in the database.

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 60

FingerLocGetResultDetails
The Utility and Common API

FingerLocGetResultDetails(
char* pstrResultMsg
uint32* puiStatusInfo)

FingerLocGetResultDetails retrieves the last fault code, fault message string, and system
information. The system status information is returned as a series of flags. These flags can be
examined to determine the type of fault (fatal or error) that has occurred, in addition to what
portions of the FAS are not operating correctly. The front-end application can make decisions
on how to proceed based on this information.

Fault codes are found in file FLStdApi.h and start with FLERR_. System status flags are
found in file FLStdApi.h and start with FLSTAT_.

Parameters

PARAMETER DESCRIPTION

pstrResultMsg A pointer to a char array to be filled out with result text message that
describes the fault. NULL if message is not desired.

puiStatusInfo A pointer to an allocated uint32 for returning system status
information. NULL if status information is not desired.

Returns

FL_OK or communications error code. If an error code is returned future calls to this function
will probably fail.

See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 61

FingerLocGetVersion
The Utility and Common API

FingerLocGetVersion(
int8* iHwVersion,
int8* iServerVersion,
int8* iDllVersion)

FingerLocGetVersion gets the version numbers of the sensor hardware, the FingerLoc
server software, and the DLL software.

Parameters

PARAMETER DESCRIPTION

iHwVersion A pointer to an allocated byte buffer for returning an ASCII string
specifying the sensor version. The maximum string size is 32 bytes.

iServerVersion A pointer to an allocated byte buffer for returning an ASCII string
specifying the server version. The maximum string size is 32 bytes.

iDllVersion A pointer to an allocated byte buffer for returning an ASCII string
specifying the DLL version. The maximum string size is 32 bytes.

Returns

FL_OK or communications error code. If an error code is returned, future calls to this function
will probably fail. The application should try to release and re-acquire the communications port
before attempting to retry this function (See FLGetCommPort() and FLReleaseCommPort()).

See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 62

FingerLocIdentify
The Convenience API

FingerLocIdentify(
tsFL_ID_INFO* pUserID
tsFL_MATCH_CRITERIA* pMatchSetup)

FingerLocIdentify displays an identification window to guide the user through the
identification process. This function controls the User interface including image feedback
windows, message boxes, and dialog boxes during the operation. The function blocks – that is,
does not return to the caller - until the identification is complete.

Parameters

PARAMETER DESCRIPTION

pUserID A pointer to an allocated tsFL_ID_INFO structure for returning
information specifying the identified user.

pMatchSetup Not used.

Returns

FL_MATCH The finger on the sensor matched the specified User.

FL_NO_MATCH The finger on the sensor did not match the specified User.

FL_FUNCTION_FAILED System failure - an error has resulted or could not
communicate with the FingerLoc server.

FL_OUT_OF_MEMORY Operation incomplete – there was insufficient memory to
perform the Validate ID operation.

NO_FINGER_IMAGE Unable to perform the operation - a useable fingerprint was
not acquired from the sensor.

FINGER_NO_CORE Unable to perform the operation - could not determine a
core within the finger image.

FL_USER_CANCELED The User canceled the operation.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 63

FingerLocInit
The Utility and Common API

FingerLocInit(
FINGERLOC_SECURITY_INFO* pSecurityInfo)

FingerLocInit initializes the FAS. This function is called to obtain a handle that is required as a
parameter for some FingerLoc API functions. An application typically calls this function once
during initialization and then passes the handle value to any functions that require it. Calling
this function requires a corresponding call to FingerLocClose() prior to application shutdown.

Parameters

PARAMETER DESCRIPTION

pSecurityInfo Not used.

Returns

A handle (pointer) to a context upon success, or NULL if the initialization failed.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 64

FingerLocOpenStream
The Image Capture API

FingerLocOpenStream(
FL_CONTEXT_HANDLE ContextHnd
BOOL bDisplayOn)

FingerLocOpenStream puts the FAS into Image Capture mode. In this mode, the FAS saves
incoming sensor images into a buffer. The application retrieves the saved images by calling
the FingerLocGetCurrentImage() function. The FAS discards any incoming images when the
buffer contains a previously stored image that has not been retrieved by the application.

Parameters

PARAMETER DESCRIPTION

ContectHnd The context handle returned by FingerLocInit()

bDisplayOn If TRUE, the FAS creates a window and displays fingerprint
images.

Returns

FL_OK The operation was successful - system has been placed
into image streaming mode.

FL_STREAM_OPEN The image steam was already open.

FL_INVALID_CONTEXT The operation was not successful - the context handle was
invalid.

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 65

FingerLocReleaseImage
The Image Capture API

FingerLocReleaseImage(
FL_CONTEXT_HANDLE ContextHnd
tsFL_IMAGE_STRUCT* pImage)

FingerLocReleaseImage deallocates the image buffer allocated by
FingerLocGetCurrentImage().

Parameters

PARAMETER DESCRIPTION

ContectHnd The context handle returned by FingerLocInit().

pImage A pointer to the image to release. This value must match the value
returned by FingerLocGetCurrentImage().

Returns

FL_OK Operation was successful.

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 66

FingerLocResample150
The Utility and Common API

FingerLocResample150(
uint8* pImage
uint16 iImageSize
uint8* pNewImage)

FingerLocResample150 magnifies a square input image by a factor of 1.5. For example, a
128 x 128-pixel input image results in a 192 x 192-pixel image.

Parameters

PARAMETER DESCRIPTION

pImage A pointer to a block of bytes containing the input image formatted
with one byte per pixel.

pImageSize The size of the input image. The image is assumed to be square.

pNewImage A pointer to an allocated output block.

Returns

FL_OK Normal return.

FL_BAD_POINTER Unexpected NULL pointer.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 67

FingerLocResample200
The Utility and Common API

FingerLocResample200(
uint8* pImage
uint16 iImageSize
uint8* pNewImage)

FingerLocResample200 magnifies a square input image by a factor of 2. For example, a 128
x 128-pixel input image results in a 256 x 256-pixel image.

Parameters

PARAMETER DESCRIPTION

pImage A pointer to a block of bytes containing the input image formatted
with one byte per pixel.

pImageSize The size of the input image. The image is assumed to be square.

pNewImage A pointer to an allocated output block.

Returns

FL_OK Normal return.

FL_BAD_POINTER Unexpected NULL pointer.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 68

FingerLocSetLeds
The Utility and Common API

FingerLocSetLeds(
uint32 iNewLedState)

FingerLocSetLeds toggles general-purpose outputs on and off by setting the sensor’s “LED”
bits.

Parameters

PARAMETER DESCRIPTION

iNewLedState A 32-bit integer containing the requested new LED bits. Only the
low four bits of the data are used. Definitions of the LED bits and
the names are in the file FLStdAPI.h.

Returns

FL_OK Normal return.

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 69

FingerLocValidateFingers
The Convenience API

FingerLocValidateFingers(
void* pTemplateData
tsFL_MATCH_CRITERIA* pMatchSetup)

FingerLocValidateFingers displays a validation window to guide the user through the
validation process. This function controls the user interface including image feedback windows,
message boxes and dialog boxes during the operation. The function “blocks” – that is, does
not return to the caller - until the validation is complete.

Parameters

PARAMETER DESCRIPTION

pTemplateData A pointer to a reference template to be matched against the finger
placed on the sensor. The template can be either a large reference
template that was returned by an Enrollment API function, or it can
be a small reference template that was extracted from a large
template using FLConvertNormalReferenceTemplateToSmall().

pMatchSetup Not used.

Returns

FL_MATCH The finger on the sensor matched the specified user.

FL_NO_MATCH The finger on the sensor did not match the specified user.

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

FL_OUT_OF_MEMORY Operation incomplete – there was insufficient memory to
perform the Validate ID operation.

NO_FINGER_IMAGE Unable to perform the operation - a valid fingerprint was not
acquired from the sensor.

FINGER_NO_CORE Unable to perform the operation - could not determine a
required core within the finger image.

FL_USER_CANCELED The User canceled the operation.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 70

FingerLocValidateID
The Convenience API

FingerLocValidateID(
tsFL_ID_INFO* pUserID
tsFL_MATCH_CRITERIA* pMatchSetup)

FingerLocValidateID displays a Validate ID window to guide the user through the validation
process. This function controls the user interface including image feedback windows, message
boxes and dialog boxes during the operation. The function blocks (does not return to the caller)
until the validation is complete.

Parameters

PARAMETER DESCRIPTION

pUserID A pointer to a user identification structure that specifies the user to
validate. The iUserId field in this tsFL_ID_INFO structure must
contain a non-NULL string.

pMatchSetup Not used.

Returns

FL_MATCH The finger on the sensor matched the specified user.

FL_NO_MATCH The finger on the sensor did not match the specified user.

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

FL_OUT_OF_MEMORY Operation incomplete - there was insufficient memory to
perform the Validate ID operation.

NO_FINGER_IMAGE Unable to perform the operation - a valid fingerprint was not
acquired from the sensor.

FINGER_NO_CORE Unable to perform the operation - could not determine a
required core within the finger image.

FL_USER The User canceled the operation.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 71

FLAbortTransaction
The Fingerprint Services API

FLAbortTransaction(
FL_TRANSACTION_ID uiTransactionID)

FLAbortTransactionID provides the application with a method to terminate an open
transaction.

Parameters

PARAMETER DESCRIPTION

uiTransactionID Transaction ID returned by the function that began the current open
transaction. The Begin Transaction functions are: FLBeginEnroll(),
FLBeginVerify(), FLBeginIdentify(), FLBeginAcquireImage(),
and FLBeginValidate().

Returns

TBD

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 72

FLBeginAcquireImage
The Fingerprint Services API

FLBeginAcquireImage(
FL_NOTIFY_CALLBACK pCallbackProc
uint32 uiCallerDWord
uint16 uiOperationType
void* pVerifyTemplate)

FLBeginAcquireImage is called to initiate an image Acquisition transaction. A non-zero
transaction ID is returned indicating that the transaction started.

After starting a transaction, the calling program receives synchronous or asynchronous
messages containing display images and state change notifications. A message of type
FL_API_ACQUIRE_DATA_RDY indicates that the final results of the transaction are
available. On receipt of this message, the application calls FLEndAcquireImage() to receive
the image data.

Parameters

PARAMETER DESCRIPTION

pCallbackProc A pointer to a procedure to receive notifications of state changes
during the Acquisition transaction.

uiCallerDWord A 32-bit value to be returned as the first value in the parameter list
when the FAS calls the application's Callback procedure.

uiOperationType Not used.

pVerifyTemplate A pointer to a template from a previous enrollment. If non-NULL,
the sensor control parameters contained in the template are used
to initialize the sensor to reduce the time required to acquire a good
image.

Returns

A transaction number to be used by the application to track the operation of the acquire
process. If NULL, the system was unable to start the transaction and a call to
FingerLocGetResultsDetails returns the cause of the API failure. This could be caused by a
transaction already being open, hardware failure, communications failure, and so on.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 73

FLBeginEnroll
The High Performance API

FLBeginEnroll(
FL_NOTIFY_CALLBACK pCallbackProc
uint32 uiCallerDWord
tsFL_MATCH_CRITERIA* pMatchSetup
tsFL_ID_INFO* pUserID
FL_FINGER_CODE iWhichFinger
uint16* puiMaxTemplateSize)

FLBeginEnroll begins an Enrollment transaction. A non-zero transaction number is returned
to indicate that the transaction started.

After starting a transaction, the calling program receives synchronous or asynchronous
messages containing display images and state change notifications. A message of type
FL_API_ENROLL_DATA_RDY indicates that the final results of the transaction are available,
Upon receipt of this message, the application calls FLEndEnroll() to receive the results of the
enrollment and to end the transaction.

Parameters

PARAMETER DESCRIPTION

pCallbackProc A pointer to the Callback procedure to receive asynchronous
display images and transaction state changes during the
transaction.

uiCallerDWord A 32 bit value to be returned as the first value in the parameter list
when the FAS calls the application's Callback procedure.

pMatchSetup Not used.

pUserID A pointer to a tsFL_ID_INFO structure specifying the user to enroll
If NULL, enroll data is not saved to the FingerLoc database.

iWhichFinger The number of the finger to enroll.

puiMaxTemplateSize A pointer to returned size of an Enrollment template

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 74

FLBeginEnroll (continued)

Returns

An FL_TRANSACTION_ID used by the application to track the status of the transaction. If
NULL, the system was unable to begin the transaction and a call to
FingerLocGetResultsDetails() returns the cause of the API failure - a transaction already
open, a hardware failure, a communications failure, and so on.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 75

FLBeginIdentify
The High Performance API

FLBeginIdentify(
FL_NOTIFY_CALLBACK pCallbackProc
uint32 uiCallerDWord
tsFL_MATCH_CRITERIA* pMatchSetup)

FLBeginIdentify initiates an identification transaction. A non-zero transaction number is
returned, indicating that the transaction started.

After starting a transaction, the calling program receives synchronous or asynchronous
messages containing display images and state change notifications. A message of type
FL_API_IDENTIFY_DATA_RDY indicates the final results of the transaction are available.

Upon receipt of this message, the application calls FLEndIdentify() to receive the results of
the validation and to end the transaction.

Parameters

PARAMETER DESCRIPTION

pCallbackProc A pointer to the callback procedure to receive asynchronous
display images and transaction state changes during the
transaction.

uiCallerDWord A 32 bit value to be returned as the first value in the parameter list
when the FAS calls the application's callback procedure.

pMatchSetup A pointer to structure containing the match requirements for this
operation. If the pointer is NULL, then the default requirements are
used.

Returns

A transaction number to be used by the application to track the status of the transaction. If
NULL, the system was unable to begin the transaction and a call to
FingerLocGetResultsDetails() returns the cause of the API failure - a transaction already
open, a hardware failure, a communications failure, and so on.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 76

FLBeginValidateID
The High Performance API

FLBeginValidateID(
FL_NOTIFY_CALLBACK pCallbackProc
uint32 uiCallerDWord
tsFL_ID_INFO* pUserID
tsFL_MATCH_CRITERIA* pMatchSetup)

FLBeginValidateID initiates a “Validate ID” transaction. A non-zero transaction number is
returned, indicating that the transaction started.

After starting a transaction, the calling program receives synchronous or asynchronous
messages containing display images and state change notifications. A message of type
FL_API_VALIDATE_DATA_RDY indicates the final results of the transaction are available,
Upon receipt of this message, the application calls FLEndValidateID() to receive the results of
the validation and to end the transaction.

Parameters

PARAMETER DESCRIPTION

pCallbackProc A pointer to the callback procedure to receive asynchronous
display images and transaction state changes during the
transaction.

uiCallerDWord A 32 bit value to be returned as the first value in the parameter list
when the FAS calls the application's callback procedure.

pUserID A pointer to a tsFL_ID_INFO structure that specifies the user to
validate.

pMatchSetup A pointer to structure containing the match requirements for this
operation. If NULL, default requirements are used.

Returns

A transaction number used by the application to track the status of the transaction. If NULL, the
system was unable to begin the transaction and a call to FingerLocGetResultsDetails()
returns the cause of the API failure - a transaction already open, a hardware failure, a
communications failure, and so on.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 77

FLBeginVerify
The High Performance API

FLBeginVerify(
FL_NOTIFY_CALLBACK pCallbackProc
uint32 uiCallerDWord
void* pTemplatePtrs
int16 iNumberTemplates
tsFL_MATCH_CRITERIA* pMatchSetup)

FLBeginVerify initiates a verification transaction. A non-zero transaction number is returned to
indicate that the transaction started.

After starting a transaction, the calling program receives synchronous or asynchronous
messages containing display images and state change notifications. A message of type
FL_API_VERIFY_DATA_RDY indicates that the final results of the transaction are available,

Upon receipt of this message, the application calls FLEndVerify() to receive the results of the
verification and to end the transaction.

Parameters

PARAMETER DESCRIPTION

pCallbackProc A pointer to the callback procedure to receive asynchronous
display images and transaction state changes during the
transaction.

uiCallerDWord A 32 bit value to be returned as the first value in the parameter list
when the FAS calls the application's callback procedure.

pTemplatePtrs A pointer to an array of template pointers. The user will be matched
against these templates.

iNumberTemplates The number of pointers in the array.

pMatchSetup A pointer to a structure containing the match requirements for this
operation. If NULL, default requirements are used.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 78

FLBeginVerify (continued)

Returns

An FL_TRANSACTION_ID used by the application to track the status of the transaction. If
NULL, the system was unable to begin the transaction and a call to
FingerLocGetResultsDetails() returns the cause of the API failure - a transaction already
open, a hardware failure, a communications failure, and so on.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 79

FLBuildMatchTemplate
The Fingerprint Services API

FLBuildMatchTemplate(
uint8* pRawImage,
void* pMatchTemplateStorage)

Given an image as input, FLBuildMatchTemplate extracts a match template. This function is
typically called before calling the function FLMatchTemplatePair() which requires a match
template as input.

Parameters

PARAMETER DESCRIPTION

pRawImage A pointer to a raw image. The FLBeginAcquireImage() and
FLEndAcquireImage() functions are used to obtain a raw image.

pMatchTemplateStorage A pointer to an allocated match template buffer. Use
FLGetMatchTemplateSize() to size this buffer.

Returns

FL_OK Successful error return.

FL_BAD_POINTER Returned if either input parameter is NULL.

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 80

FLBuildOSBmpHeader
The Fingerprint Services API

FLBuildOSBmpHeader(
uint8* pRawImage
void* pOSBmpHeader)

FLBuildOSBmpHeader fills out an allocated bitmap header of size
FLGetOSBmpHeaderSize() with values and pixel data if required. The result is used to
display the image in the current operating system.

Parameters

PARAMETER DESCRIPTION

pRawImage A pointer to raw sensor image data.

pOSBmpHeader A pointer to an allocated OS-dependent bitmap information
structure.

If the OS requires a local copy of the pixels in a bitmap object, this
function is used to move pixel data into the bitmap information
structure. The format of the bitmap structure is specific to the
operating system and is described in the API documentation for
each platform. If the pointer to the image data is NULL, or if the OS
bitmap information does not contain pixel data, image data is not
copied.

In the case of Windows, pOSBmpHeader points to a
BITMAPINFO structure containing a BITMAPINFOHEADER
followed by a color palette, which is an RGBQUAD array. A
BITMAPINFO structure contains no pixel data.

Returns

FL_OK Normal return.

FL_BAD_POINTER Unexpected NULL pointer.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 81

FLBuildReferenceTemplate
The Fingerprint Services API

FLBuildReferenceTemplate(
uint8* pRawImage,
void* pReferenceTemplate)

Given an input image, FLBuildReferenceTemplate builds a reference or enroll type of
template. This function is typically called before calling the function FLMatchTemplatePair()
which requires a reference template as input.

Parameters

PARAMETER DESCRIPTION

pRawImage A pointer to a raw image. The FLBeginAcquireImage() and
FLEndAcquireImage() functions are used to obtain a raw image.

pReferenceTemplate A pointer to an allocated buffer to receive the reference template.
Use FLGetReferenceTemplateSize() to size this buffer.

Returns

FL_OK Successful error return

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 82

FLContinueTransaction
The Fingerprint Services API

FLContinueTransaction(
FL_TRANSACTION_ID uiTransactionID)

FLContinueTransaction returns a pointer to the next API event message to be processed for
the current transaction.

This function provides a method for synchronous event processing by allowing the calling
application to poll the FAS for event messages during a transaction. The polling method to
obtain API event messages can be used when it is not practical for the application to support
the asynchronous callback method for handling API event messages.

The FLReleaseMessage() function must be called to release the current message and free
the returned message buffer once the application has processed the API event message.

Parameters

PARAMETER DESCRIPTION

uiTransactionID The Transaction ID returned by the function that began the current
open transaction. The Begin Transaction functions are:
FLBeginEnroll(), FLBeginVerify(), FLBeginIdentify(),
FLBeginAcquireImage(), and FLBeginValidate().

Returns

The function returns a pointer to a message if an event message is available or NULL if no
message is available. In the latter case, the application typically sleeps for a short period (10 -
100 milliseconds) and calls the function again. NULL is also returned in the event of an error or
if an invalid transaction ID is specified.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 83

FLConvertNormalReferenceTemplateToSmall
The Fingerprint Services API

FLConvertNormalReferenceTemplateToSmall(
void* pRtnSmallTmpltBffr,
void* pInputNormalTmplt)

FLConvertNormalReferenceTemplateToSmall extracts a small reference template from a normal
(large) template.

Parameters

PARAMETER DESCRIPTION

pRtnSmallTmplBffr A pointer to an allocated buffer for returning a small template. Use
FLGetSmallReferenceTemplateSize() to allocate this buffer.

pInputNormalTmplt A pointer to the normal, or large, template to be converted.

Returns

FL_OK Normal return

FL_BAD_POINTER Unexpected NULL pointer

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 84

FLEndAcquireImage
The Fingerprint Services API

FLEndAcquireImage(
FL_TRANSACTION_ID uiCurrentID
uint8* pRawImage)

FLEndAcquireImage ends an image acquisition transaction and returns the result.

Parameters

PARAMETER DESCRIPTION

uiCurrentID The transaction ID provided by the transaction “begin” call.

pRawImage A pointer to an allocated memory buffer used to return the final
image. Use FLGetImageBufferSize() to size this buffer.

On a successful return, the data in this buffer begins with pixel data
and may contain other support data following the pixel data. This
allows the caller to easily access the pixel data if needed for
display, extraction or other use.

Returns

FL_OK Normal return value.

FL_TIMEOUT Unable to acquire a valid image - the application should not
see the data in the return image buffer.

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 85

FLEndEnroll
The High Performance API

FLEndEnroll(
FL_TRANSACTION_ID uiCurrentID
void* pTemplatePtr
int16* piTemplateResultSize
FINGERLOC_ID_INFO* pUserID)

FLEndEnroll returns the results of the enrollment and terminates the enrollment transaction.

Parameters

PARAMETER DESCRIPTION

uiCurrentID The Transaction ID provided by the FLBeginEnroll function.

pTemplatePtr A pointer to an allocated buffer for returning the reference template.
Use FLGetReferenceTemplateSize() to size this buffer. If NULL,
no template is returned.

piTemplateResultSize A pointer to the number of bytes written to the template buffer.

pUserID Pointer to a structure specifying the user to enroll. If NULL,
enrollment data is not saved in the FingerLoc database.

Returns

FL_OK The enrollment was successful.

FL_NO_IMAGE No image was acquired

FL_BAD_IMAGE No suitable image was acquired

FL_FUNCTION_FAILED Unable to save template to database

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 86

FLEndIdentify
The High Performance API

FLEndIdentify(
FL_TRANSACTION_ID uiCurrentID
tsFL_ID_INFO* pUserID)

FLEndIdentify terminates an identification transaction and returns the result of the transaction.

Parameters

PARAMETER DESCRIPTION

uiCurrentID The Transaction ID provided by the FLBeginIdentify call.

pUserID A pointer to a User ID structure or NULL. If non-NULL and a match
occurs, this structure is filled in with the matched user ID
information.

Returns

FL_MATCH A match was found in the database

FL_NO_MATCH No match was found in the database

FL_BAD_POINTER Unexpected NULL pointer

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 87

FLEndIdentifyEx
The High Performance API

FLEndIdentifyEx(
FL_TRANSACTION_ID uiCurrentID,
tsFL_ID_INFO* pUserID,
tsFL_MATCH_RESULTS* pMatchResults,
void* pParamStruct);

FLEndIdentifyEx terminates an identification transaction and returns the result of the
transaction. This function is the extended version of FLEndIdentify(), with an additional
parameter used to return match results indicating the strength of the acceptance or rejection.

Parameters

PARAMETER DESCRIPTION

uiCurrentID The Transaction ID provided by the FLBeginIdentify call.

pUserID A pointer to a User ID structure or NULL. If non-NULL and a match
occurs, this structure is filled in with the matched user ID
information.

pMatchResults If non-NULL, returns confidence information about the match result.

pParamStruct Reserved for future use.

Returns

FL_MATCH The user ID was validated

FL_NO_MATCH The user ID was not validated

FL_BAD_POINTER Unexpected NULL pointer

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 88

FLEndValidateID
The High Performance API

FLEndValidateID(
FL_TRANSACTION_ID uiCurrentID)

FLEndValidateID terminates a validation transaction and returns the result of the transaction.

Parameters

PARAMETER DESCRIPTION

uiCurrentID The Transaction ID returned by the FLBeginValidateID call.

Returns

FL_MATCH The user ID was validated

FL_NO_MATCH The user ID was not validated

FL_BAD_POINTER Unexpected NULL pointer

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 89

FLEndValidateIDEx
The High Performance API

FLEndValidateIDEx(
FL_TRANSACTION_ID uiCurrentID,
tsFL_MATCH_RESULTS* pMatchResults,
void* pParamStruct)

FLEndValidateIDEx terminates a validation transaction and returns the result of the validation.
This function is the extended version of FLEndValidateID() with an additional parameter used
to return match results indicating the strength of the FAR/FRR.

Parameters

PARAMETER DESCRIPTION

uiCurrentID The Transaction ID returned by the FLBeginValidateID call.

pMatchResults Allocated tsFL_MATCH_RESULTS structure for returning
confidence information about the match result.

pParamStruct Reserved for future use.

Returns

FL_MATCH The user ID was validated

FL_NO_MATCH The user ID was not validated

FL_BAD_POINTER Unexpected NULL pointer

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 90

FLEndVerify
The High Performance API

FLEndVerify(
FL_TRANSACTION_ID uiCurrentID
uint16* pMatchIndex)

FLEndVerify terminates a verification transaction and returns the result of the transaction.

Parameters

PARAMETER DESCRIPTION

uiCurrentID The Transaction ID provided by the FLBeginVerify call.

pMatchIndex A pointer to a variable which is set on a successful verification to
the index of the template that matched the User.

Returns

FL_MATCH A match was found

FL_NO_MATCH No match was found

FL_BAD_POINTER Unexpected NULL pointer

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 91

FLEndVerifyEx
The High Performance API

FLEndVerifyEx(
FL_TRANSACTION_ID uiCurrentID,
uint16* pMatchIndex,
tsFL_MATCH_RESULTS* pMatchResults,
void* pParamStruct)

FLEndVerifyEx terminates a verification transaction and returns the result of the transaction.
This is the extended version of FLEndVerify() with an additional parameter used to return
match results indicating the strength of the acceptance or rejection.

Parameters

PARAMETER DESCRIPTION

uiCurrentID The Transaction ID provided by the FLBeginVerify call.

pMatchIndex A pointer to a variable which is set on a successful verification to
the index of the template that matched the User.

pMatchResults Returns confidence information about the match result.

pParamStruct Reserved for future use.

Returns

FL_MATCH The user ID was validated

FL_NO_MATCH The user ID was not validated

FL_BAD_POINTER Unexpected NULL pointer

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 92

FLGetCommPort
The Utility and Common API

FLGetCommPort(
uint8* pMuxControl
uint16 uiCmdLen)

FLGetCommPort gets control of the serial port. This allows the application to inform the
control software that the hardware is about to disconnect the sensor from the input port. This
function could be useful when a User wishes to operate two devices, such as a sensor and a
smart card reader, on the same communications port.

Parameters

PARAMETER DESCRIPTION

pMuxControl Byte array with data to switch the mux, as issued by AuthenTec.

uiCmdLen The number of bytes in the array. Length of switch sequence.

Returns

FL_OK Normal return.

FL_FUNCTION_FAILED This is a general error return - use
FingerLocGetResultsDetails() to receive additional details
about the error.

Other See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 93

FLGetImageBufferSize
The Fingerprint Services API

FLGetImageBufferSize()

FLGetImageBufferSize gets the size of the image buffer block required to store fingerprint
image data. This function is typically called to allocate a memory buffer prior to calling a
function that returns image data.

Parameters

PARAMETER DESCRIPTION

none There are no parameters associated with this function.

Returns

The size of a FingerLoc image buffer. A FingerLoc image buffer begins with 128 x 128 bytes of
image data followed by additional support data.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 94

FLGetMatchTemplateSize
The Fingerprint Services API

FLGetMatchTemplateSize()

FLGetMatchTemplateSize is used to get the size in bytes of a match template. This function
is typically called prior to allocating memory for a match template.

Parameters

PARAMETER DESCRIPTION

none There are no parameters associated with this function.

Returns

Size in bytes of a match template.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 95

FLGetOSBmpHeaderSize
The Fingerprint Services API

FLGetOSBmpHeaderSize()

FLGetOSBmpHeaderSize gets the size of a bitmap header structure, specific to the current
operating system, describing a displayable fingerprint image.

The size includes all components necessary for the current operating system. This can include
header info, color look-up tables and pixel data if the general operating system specific method
of handling displayable images (image function calls) requires bundled components. A bitmap
header object can be allocated and subsequently passed to FLBuildOSBmpHeader() to be
filled out.

Windows BMP operating system calls normally have parameters that specify both a pointer to
bitmap header structure that describes the image format, and a separate pointer to the actual
pixel data. A call to this function will therefore return the size required to store a bitmap header
and a color look-up array when called within the Windows operating system.

Parameters

PARAMETER DESCRIPTION

none There are no parameters associated with this function.

Returns

The size in bytes of the bitmap header.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 96

FLGetReferenceTemplateSize
The Fingerprint Services API

FLGetReferenceTemplateSize()
//
FLGetReferenceTemplateSize returns the size in bytes of a normal (“large”) reference
template created by an Enrollment operation. This function is typically called prior to allocating
memory for a reference template.

Parameters

PARAMETER DESCRIPTION

none There are no parameters associated with this function.

Returns

The size in bytes of a large reference template.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 97

FLGetSmallReferenceTemplateSize
The Fingerprint Services API

FLGetSmallReferenceTemplateSize()

FLGetSmallReferenceTemplateSize returns the size in bytes of a small reference template.
Typically, this function is called prior to allocating memory for a small reference template. See
information below regarding reduced sized templates.

Reduced sized templates are useful in limited storage space applications. Reduced sized
templates are created by calling FLConvertNormalReferenceTemplateToSmall(). Large
templates are always exported by FingerLoc Enrollment functions. An application can extract a
small template from a large one and store only the reduced sized template. A reduced size
template can be passed to the FingerLoc Matching API functions.

Larger templates are required for high speed, one-to-many identification operations. Reduced-
sized templates can be used in one-to-many matching applications. However, for large
databases, their use can result in significantly reduced performance and are not
recommended.

Parameters

PARAMETER DESCRIPTION

none There are no parameters associated with this function.

Returns

Size in bytes of a small reference template.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 98

FLMatchTemplatePair
The Fingerprint Services API

FLMatchTemplatePair(
void* pReferenceTemplate
void* pMatchTemplate)

FLMatchTemplatePair compares a Reference (or Enrollment) template to a Matching
template to determine if the templates represent the same fingerprint. Default match criteria
are used to determine if the templates match.

This is similar to the extended version of this function, FLMatchTemplatePairEx(), which has
added parameters to specify the match criteria and return the achieved match results.

Parameters

PARAMETER DESCRIPTION

pReferenceTemplate A pointer to a reference template. A reference template is returned
by the Enrollment API functions or by
FLBuildReferenceTemplate().

pMatchTemplate A pointer to a match template. A match template is returned by the
FLBuildMatchTemplate() function.

Returns

FL_MATCH The templates represent the same finger

FL_NO_MATCH The templates are not for the same finger

FL_BAD_POINTER A template pointer was NULL

FL_FUNCTION_FAILED This is a general error return - a call to
FingerLocGetResultsDetails returns additional details
about the result.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 99

FLMatchTemplatePairEx
The Fingerprint Services API

FLMatchTemplatePairEx(
void* pReferenceTemplate
void* pMatchTemplate,
tsFL_MATCH_CRITERIA* pMatchCriteria,
tsFL_MATCH_RESULTS* pMatchResults,
void* pParamStruct)

FLMatchTemplatePairEx compares a Reference (or Enrollment) template to a Matching
template to determine if the templates represent the same fingerprint.

This call is similar to the function FLMatchTemplatePair(), but has additional parameters to
specify match criteria and to receive match results that indicate the strength of the match.

Parameters

PARAMETER DESCRIPTION

pReferenceTemplate A pointer to a reference template. A reference template is returned
by the enroll API functions and by the
FLBuildReferenceTemplate().

pMatchTemplate A pointer to a match template. A match template is returned by
FLBuildMatchTemplate().

pMatchCriteria A pointer to match criteria structure that specifies the FAR (False
Acquisition Rate) and FRR (False Rejection Rate) criteria. If NULL,
default criteria are used.

pMatchResults A pointer to an allocated tsFL_MATCH_RESULTS structure for
returning match results in terms of FAR and FRR achieved. If
NULL, no results are returned.

pParamStruct Reserved for future use.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 100

FLMatchTemplatePairEx (continued)

Returns

FL_MATCH The templates are for the same finger

FL_NO_MATCH The templates are not for the same finger

FL_BAD_POINTER Unexpected NULL template pointer.

FL_FUNCTION_FAILED General error return – use FingerLocGetResultsDetails()
to receive additional details about the error.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 101

FLReadCommPort
The Utility and Common API

FLReadCommPort(
uint8* pIOData
uint16 uiIObufSize
uint16* uiIOLen
uint32 uiMaxReadTime)

FLReadCommPort reads a byte stream from the communications port. The application must
have successfully called FLGetCommPort before using this function.

Parameters

PARAMETER DESCRIPTION

pIOData A pointer to data to be sent.

uilObufSize The number of bytes in the buffer.

uiReadCount A pointer to a variable to receive the transfer count.

uiMaxReadTime The maximum number of milliseconds to wait for data of
uiIObufSize. If zero, the wait time is calculated based on the
current baud rate, and the number of bytes to read. Usually the
application will set this to zero and allow the system to decide about
timeouts.

Returns

FL_OK or communications error code. If an error code is returned, future calls to this function
will probably fail. The application should try to release and re-acquire the communications port
before attempting to retry this function (See FLGetCommPort() and FLReleaseCommPort()).

See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 102

FLReleaseCommPort
The Utility and Common API

FLReleaseCommPort(
uint8* pMuxControl
uint16 uiCmdLen)

FLReleaseCommPort releases control of the serial communications port

Parameters

PARAMETER DESCRIPTION

pMuxControl Byte array with data to switch the mux as issued by AuthenTec.

uiCmdLen The number of bytes in the array. Length of switch sequence.

Returns

FL_OK or communications error code. If an error code is returned, future calls to this function
will probably fail. The application should try to release and re-acquire the communications port
before attempting to retry this function (See FLGetCommPort() and FLReleaseCommPort()).

See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 103

FLReleaseMessage
The Fingerprint Services API

FLReleaseMessage(
tsFL_API_MSG* pTransactionMsg)

FLReleaseMessage releases an API event message received by an application's callback
function when the application is receiving API event messages in asynchronous mode or an
API event message received by calling FLContinueTransaction() when the application is
using polled mode.

Parameters

PARAMETER DESCRIPTION

pTransactionMsg A pointer to the API event message provided by
FLContinueTransaction function or the API event-message
pointer received by the asynchronous callback function. This
parameter may not be NULL.

Returns

TBD

FLWriteCommPort
The Utility and Common API

FLWriteCommPort(
uint8* pIOData
uint16 uiIOLen)

FLWriteCommPort writes a byte stream to the communications port. The application must
have successfully called FLGetCommPort before using this function.

Parameters

PARAMETER DESCRIPTION

pIOData A pointer to data to be sent.

uilOLen The number of bytes in the buffer to send.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 104

Returns

FL_OK or communications error code. If an error code is returned, future calls to this function
will probably fail. The application should try to release and re-acquire the communications port
before attempting to retry this function (See FLGetCommPort() and FLReleaseCommPort()).

See the error codes in FLStdAPI.h.

 2060 Rev 1.5 (15AUG00)

Programmer’s Reference Manual for Microsoft Windows 105

AuthenTec, Inc.
Post Office Box 2719

Melbourne, Florida 32902-2719
321-308-1300

www.authentec.com
apps@authentec.com

http://www.authentec.com/

	Introduction
	Fingerprint Biometric Programming Overview
	Template Storage Overview
	FAS Internal Template Database

	API Group Overview
	Source Code Examples

	The High Performance API
	Theory of Operation
	API Function Calls
	Event Messages
	Synchronous Operation Implementation
	Asynchronous Operation Implementation

	Application Example

	The Fingerprint Services API
	Theory of Operation
	API Function Calls
	Event Messages
	Synchronous Operation Implementation
	Asynchronous Operation Implementation

	Application Example

	The Convenience API
	Theory of Operation
	API Function Calls

	The Image Capture API
	API Function Calls

	The Utility and Common API
	API Function Calls

	Event Messages, Error Codes, and Return Codes
	Event Messages
	Error codes
	Return Codes

	The High Performance API Demonstration
	Description
	File
	Enroll User
	Validate User ID
	Verify Template
	Identify User
	Help

	Implementation
	API Reference
	
	
	FingerLocAllocOSBitmap
	FingerLocClose
	FingerLocCloseStream
	FingerLocConvertRawImageToOSBmp
	FingerLocDeleteOSBitmap
	FingerLocDeleteUser
	FingerLocEnroll
	FingerLocGetCurrentImage
	FingerLocGetImageState
	FingerLocGetLeds
	FingerLocGetNextUser
	FingerLocGetResultDetails
	FingerLocGetVersion
	FingerLocIdentify
	FingerLocInit
	FingerLocOpenStream
	FingerLocReleaseImage
	FingerLocResample150
	FingerLocResample200
	FingerLocSetLeds
	FingerLocValidateFingers
	FingerLocValidateID
	FLAbortTransaction
	FLBeginAcquireImage
	FLBeginEnroll
	FLBeginIdentify
	FLBeginValidateID
	FLBeginVerify
	FLBuildMatchTemplate
	FLBuildOSBmpHeader
	FLBuildReferenceTemplate
	FLContinueTransaction
	FLConvertNormalReferenceTemplateToSmall
	FLEndAcquireImage
	FLEndEnroll
	FLEndIdentify
	FLEndIdentifyEx
	FLEndValidateID
	FLEndValidateIDEx
	FLEndVerify
	FLEndVerifyEx
	FLGetCommPort
	FLGetImageBufferSize
	FLGetMatchTemplateSize
	FLGetOSBmpHeaderSize
	FLGetReferenceTemplateSize
	FLGetSmallReferenceTemplateSize
	FLMatchTemplatePair
	FLMatchTemplatePairEx
	FLReadCommPort
	FLReleaseCommPort
	FLReleaseMessage
	FLWriteCommPort

