

© Copyright 2002 LSI Logic Corportion All rights reserved. LSI Logic Corporation 6145-D Northbelt Parkway Norcross, GA 30071

This publication contains proprietary information which is protected by copyright. No part of this publication can be reproduced, transcribed, stored in a retrieval system, translated into any language or computer language, or transmitted in any form whatsoever without the prior written consent of the publisher, LSI Logic Corporation. LSI Logic acknowledges the following trademarks:

Intel is a registered trademark of Intel Corporation.

Sytos 300 is a registered trademark of Sytron Corporation.

MS-DOS, and Microsoft are registered trademarks of Microsoft Corporation. Microsoft Windows and

Windows NT are registered trademarks of Microsoft Corporation.

SCO, UnixWare, and Unix are registered trademarks of the Santa Cruz Operation. Inc.

Novell NetWare is a registered trademark of Novell Corporation.

IBM, AT, VGA, PS/2, and OS/2 are registered trademarks and XT and CGA are trademarks of International Business Machines Corporation.

NEC is a registered trademark of Nippon Electric Corporation.

Sony is a registered trademark of Sony Corporation.

Toshiba is a registered trademark of Toshiba America Corporation.

Archive and Python are registered trademarks of Archive Corporation.

Quantum is a registered trademark of Quantum Corporation.

ASPI is a registered trademark of Adaptec, Inc.

Seagate is a registered trademark of Seagate Corporation.

SyQuest is a trademark of SyQuest Corporation.

Panasonic is a registered trademark of Panasonic Corporation.

Hewlett-Packard is a registered trademark of Hewlett-Packard Corporation.

ASPI is a registered trademark of Adaptec, Inc.

Amphenol is a trademark of Amphenol Corporation.

Siemens is a registered trademark of Siemens Corporation.

AMP is a trademark of AMP Corporation.

Revision History

8/16/02 Initial release.

Contents

Chapter 1	
Overview	1
	1
	1
Single-Ended and Differential SCSI Buse	s1
Maximum Cable Length for SCSI Standa	rds2
SCSI Bus Widths and Maximum Through	put2
Documentation	3
Chapter 2	5
Introduction to RAID	5
RAID Benefits	5
In This Chapter	6
MegaRAID SCSI 320-0 – Host-Based RA	ID Solution7
RAID Overview	8
Physical Array	8
	8
Consistency Check	8
Fault Tolerance	8
Disk Striping	9
Disk Mirroring	
Disk Spanning	11
Parity	
Hot Spares	
Hot Swap	
Disk Rebuild	
Logical Drive States	
SCSI Drive States	
Disk Array Types	
Enclosure Management	14
Chapter 3	15
RAID Levels	15
Selecting a RAID Level	
RAID 1	
RAID 5	
RAID 50	21

Chapter 4	23
Features23	
In This Chapter	23
SMART Technology	
Configuration on Disk	
Hardware Requirements	
Configuration Features	
Array Performance Features	
RAID Management Features	
Fault Tolerance Features	
Software Utilities	25
Operating System Software Drivers	
Operating System Drivers	
MegaRAID SCSI 320-0 Specifications	
PCI Bridge/CPU	26
Cache Memory	
MegaRAID BIOS	
SCSI Firmware	27
RAID Management	28
MegaRAID BIOS Configuration Utility	
WebBIOS Configuration Utility	
Power Console Plus	
MegaRAID Manager	28
Fault-Tolerance Features	28
Detect Failed Drive	29
Hot Swap	29
Compatibility	29
Server Management	29
SCSI Device Compatibility	29
Software	29
Chapter 5	31
Configuring MegaRAID SCSI 320-031	21
Configuring SCSI Physical Drives	31
SCSI Channel	
Basic Configuration Rules	
Current Configuration	
Logical Drive Configuration	
Physical Device Layout	
Configuring Arrays	
Arranging Arrays	
Creating Hot Spares	
Creating Logical Drives	
Configuration Strategies	
Assigning RAID Levels	
Configuring Logical Drives	
Optimizing Data Storage	
Planning the Array Configuration	
Using the Array Configuration Planner	41

Chapter 6	43
Hardware Installation43	
Requirements	
Checklist	
Installation Steps	44
Step 1 Unpack	
Step 2 Power Down	
Step 3 Configure Motherboard	
Step 4 Set Jumpers	
MegaRAID SCSI 320-0 Card Layout	
Step 5 Install MegaRAID SCSI 320-0	
Step 6 Power Up	
Step 7 Run the MegaRAID BIOS Configuration Utility	
Step 8: Install the Operating System Driver	
Summary	
Chapter 7	51
Troubleshooting51	
BIOS Boot Error Messages	53
Other BIOS Error Messages	
Other Potential Problems	
A 3i A	50
Appendix A59	59
radiole warmigs	
Glossary61	
Index69	

Preface

The MegaRAID SCSI 320-0 PCI RAID controller supports single-ended and low-voltage differential (LVD) SCSI devices on a Ultra320 and Wide SCSI channel with data transfer rates up to 320 megabytes per second (MB/s). This manual describes MegaRAID SCSI 320-0.

Limited Warranty

The buyer agrees if this product proves to be defective, that LSI Logic is obligated only to repair or replace this product at LSI Logic' discretion according to the terms and conditions of the warranty registration card that accompanies this product. LSI Logic shall not be liable in tort or contract for any loss or damage, direct, incidental or consequential resulting from the use of this product. Please see the Warranty Registration Card shipped with this product for full warranty details.

Limitations of Liability

LSI Logic shall in no event be held liable for any loss, expenses, or damages of any kind whatsoever, whether direct, indirect, incidental, or consequential (whether arising from the design or use of this product or the support materials provided with the product). No action or proceeding against LSI Logic may be commenced more than two years after the delivery of product to Licensee of Licensed Software.

Licensee agrees to defend and indemnify LSI Logic from any and all claims, suits, and liabilities (including attorney's fees) arising out of or resulting from any actual or alleged act or omission on the part of Licensee, its authorized third parties, employees, or agents, in connection with the distribution of Licensed Software to end-users, including, without limitation, claims, suits, and liability for bodily or other injuries to end-users resulting from use of Licensee's product not caused solely by faults in Licensed Software as provided by LSI Logic to Licensee.

Package Contents

You should have received:

- A MegaRAID SCSI 320-0 PCI RAID controller
- A CD with drivers, utilities and documentation
- A MegaRAID SCSI 320-0 ZCR Hardware Guide (on CD)
- A MegaRAID Configuration Software Guide (on CD)
- A MegaRAID Operating System Driver Installation Guide (on CD)
- Software license agreement (on CD)
- A warranty registration card

Technical Support

If you need help installing, configuring, or running the MegaRAID SCSI 320-0 PCI RAID Controller, call your LSI Logic OEM Technical Support representative at 678-728-1250. Before you call, please complete the **MegaRAID Problem Report** form on the next page.

Web Site

We invite you to access the LSI Logic world wide web site at http://www.lsilogic.com or the MegaRAID support page at http://megaraid.lsilogic.com.

MegaRAID Problem Report Form

Complete this form before you call your LSI Logic OEM Customer Service Representative.

Table 1. MegaRAID Problem Report Form

MegaRAID Information
Today's Date
Date of Purchase
Invoice Number
Serial Number
Cache Memory
Firmware Version
BIOS Version
BIOS manufacturer:
BIOS Date:
Video Adapter:
CPU Type/Speed:
System Memory:
Other adapter cards
Installed:
n:

Logical Drive Configuration

Use Table 2 to record the configuration details for your logical drives.

Table 2. Logical Drive Configuration

Logical	RAID	Stripe	Logical	Cache	Read	Write	# of
Drive	Level	Size	Drive	Policy	Policy	Policy	Physical
			Size				Drives
LD0							
LD1							
LD2							
LD3							
LD4							
LD5							
LD6							
LD7							
LD8							
LD9							
LD10							
LD11							
LD12							
LD13							
LD14							
LD15							
LD16							
LD17							
LD18							
LD19							
LD20							
LD21							
LD22							
LD23							
LD24							
LD25							
LD26							
LD27							
LD28							
LD29							
LD30							
LD31							
LD32							
LD33							
LD34							
LD35							
LD36							
LD37							
LD38							

Logical	RAID	Stripe	Logical	Cache	Read	Write	# of
Drive	Level	Size	Drive	Policy	Policy	Policy	Physical
			Size				Drives
LD39							

Physical Device Layout

Use Table 3 to record the physical device layout.

Table 3. Physical Drive Layout

Table 3. Physical Drive Layou	Channel 1	Channel 2
Target ID		
Device type		
Logical drive number/Drive number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive number		
Manufacturer/Model number		
Firmware level		

	Channel 1	Channel 2
Target ID		
Device type		
Logical drive number/Drive number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive number		
Manufacturer/Model number		
Firmware level		

Disclaimer

This manual describes the operation of the LSI Logic MegaRAID SCSI 320-0 Disk Array Controller. Although efforts have been made to assure the accuracy of the information contained here, LSI Logic expressly disclaims liability for any error in this information, and for damages, whether direct, indirect, special, exemplary, consequential or otherwise, that may result from such error, including but not limited to the loss of profits resulting from the use or misuse of the manual or information contained therein (even if LSI Logic has been advised of the possibility of such damages). Any questions or comments regarding this document or its contents should be addressed to LSI Logic at the address shown on the cover.

LSI Logic provides this publication "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability or fitness for a specific purpose.

Some states do not allow disclaimer of express or implied warranties or the limitation or exclusion of liability for indirect, special, exemplary, incidental or consequential damages in certain transactions; therefore, this statement may not apply to you. Also, you may have other rights which vary from jurisdiction to jurisdiction.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. LSI Logic may make improvements and/or revisions in the product(s) and/or the program(s) described in this publication at any time.

Requests for technical information about LSI Logic products should be made to your LSI Logic authorized reseller or marketing representative.

FCC Regulatory Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Warning: Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a specific installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, try to correct the interference by one or more of the following measures:

- 1) Reorient or relocate the receiving antenna.
- 2) Increase the separation between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Shielded interface cables must be used with this product to ensure compliance with the Class B FCC limits.

LSI Logic MegaRAID SCSI 320-0 PCI RAID Controller

Model Number: Series 520

FCC ID Number:

Disclaimer

LSI LOGIC certifies only that this product will work correctly when this product is used with the same jumper settings, the same system configuration, the same memory module parts, and the same peripherals that were tested by LSI LOGIC with this product. The complete list of tested jumper settings, system configurations, peripheral devices, and memory modules are documented in the LSI LOGIC Compatibility Report for this product. Call your LSI LOGIC sales representative for a copy of the Compatibility Report for this product.

Chapter 1 Overview

The MegaRAID® SCSI 320-0 zero-channel RAID (ZCR) PCI RAID controller is a high-performance intelligent PCI-to-SCSI host adapter with RAID control capabilities. The MegaRAID SCSI 320-0 is a low-profile card that provides reliability, high performance, and fault-tolerant disk subsystem management.

MegaRAID SCSI 320-0 can be installed in a special PCI expansion slot in a computer with a motherboard that has the LSI Logic 53C1030 SCSI chip. The zero-channel adapter converts a motherboard's own on-board SCSI controller into a powerful PCI SCSI RAID solution, and is targeted for 1U and 2U server environments.

The MegaRAID SCSI 320-0 is part of the LSI Logic Intel i960RM/RS-based MegaRAID controller family, and is an entry-level to mid-range RAID controller solution. This controller offers a cost-effective way to implement RAID in a server.

The MegaRAID SCSI 320-0 supports data transfer rates up to 320 megabytes per second (MB/s) per channel, and up to fifteen non-Ultra SCSI devices. MegaRAID SCSI 320-0 includes MegaRAID features and performance.

Features

MegaRAID SCSI 320-0 features include:

- Provides a high performance I/O migration path while preserving existing PCI-SCSI software.
- Performs SCSI data transfers up to 320 MB/s.
- Performs synchronous operation on a wide low-voltage differential (LVD) SCSI bus.
- Allows up to 15 LVD SCSI devices on the wide bus.
- Includes an Intel® GC80302 integrated I/O processor that performs RAID calculations and routing.
- Supports 32 MB to 128 MB of SDRAM on-board cache memory used for read and write-back caching, and RAID 5 parity generation.

NVRAM and Flash ROM

A 32 KB x 8 non-volatile random access memory (NVRAM) stores RAID system configuration information. The MegaRAID SCSI 320-0 firmware is stored in flash ROM for easy upgrade.

Single-Ended and Differential SCSI Buses

The SCSI standard defines two electrical buses:

- A single-ended bus
- Low-voltage differential bus

Maximum Cable Length for SCSI Standards

Table 1-1 contains the maximum cable length that you can use depending on the SCSI speeds, and type of device.

Table 1-1. Maximum Cable Length for SCSI Standards

Standard	Single ended	Low-voltage	Maximum Number
		Differential	of Drives
Ultra SCSI	1.5 m	12 m	7
Ultra SCSI	3 m	12 m	3
Wide Ultra SCSI		12 m	15
Wide Ultra SCSI	1.5 m	12 m	7
Wide Ultra SCSI	3 m	12 m	3
Ultra 2 SCSI		25 m	1
Ultra 2 SCSI		12 m	7
Wide Ultra 2 SCSI		25 m	1
Wide Ultra 2 SCSI		12 m	15
Ultra160 SCSI		25m	1
Ultra160 SCSI		12m	7
Wide Ultra160 SCSI		25m	1
Wide Ultra160 SCSI		12m	15
Ultra320		12m	15
Ultra320		20m	1

SCSI Bus Widths and Maximum Throughput

Table 1-2 lists the SCSI bus widths, and maximum throughput, based on the SCSI speeds.

Table 1-2. SCSI Bus Widths and Maximum Throughput

SCSI Standard	SCSI Bus Width	SCSI Throughput
Fast Wide SCSI	16 bits	20 MB/s
Wide Ultra SCSI	16 bits	40 MB/s
Wide Ultra 2 SCSI	16 bits	80 MB/s
Wide Ultra 160 SCSI	16 bits	160 MB/s
Ultra 320 SCSI	16 bits	320 MB/s

Documentation

The MegaRAID SCSI 320-0 documentation set includes:

- The MegaRAID SCSI 320-0 ZCR Hardware Guide
- The MegaRAID Configuration Software Guide
- The MegaRAID Operating System Driver Installation Guide

MegaRAID SCSI 320-0 ZCR Hardware Guide

The hardware guide for this board contains the RAID overview, RAID planning, and RAID system configuration information you need first. Read the *MegaRAID SCSI 320-0 ZCR Hardware Guide* first.

MegaRAID Configuration Software Guide

This manual describes the software configuration utilities that you can use to configure and modify RAID systems.

MegaRAID Operating System Driver Installation Guide

This manual provides detailed information about installing the MegaRAID SCSI 320-0 operating system drivers.

Chapter 2 Introduction to RAID

Redundant array of independent disks (RAID) is an array of multiple independent hard disk drives that provide high performance and fault tolerance. A RAID disk subsystem improves I/O performance over a computer using only a single drive. The RAID array appears to the host computer as a single storage unit or as multiple logical units. I/O is expedited because several disks can be accessed simultaneously. RAID systems improve data storage reliability and fault tolerance compared to single-drive computers. Data loss because of a hard drive failure can be recovered by reconstructing missing data from the remaining data and parity drives.

RAID Benefits

RAID has gained popularity because it improves I/O performance and increases storage subsystem reliability. RAID provides data security through fault tolerance and redundant data storage. The MegaRAID SCSI 320-0 management software configures and monitors RAID disk arrays.

Improved I/O

Although disk drive capabilities have improved drastically, actual performance has been improved only three to four times in the last decade. Computing performance has been improved over 50 times during the same time period.

Increased Reliability

The electromechanical components of a disk subsystem operate more slowly, require more power, and generate more noise and vibration than electronic devices. These factors reduce the reliability of data stored on disks.

In This Chapter

Table 2-1 lists the topics discussed in this chapter.

Table 2-1. Topics in this Chapter

Major Topic	Subtopic	Turn to
Host-based solution		page 7
RAID overview		page 8
	Physical array	page 8
	Logical drive	page 8
	Consistency check	page 8
	Fault tolerance	page 8
	Disk striping	page 9
	Disk mirroring	page 10
	Disk spanning	page 11
	Parity	page 12
	Hot spares	page 12
	Hot swap	page 12
	Disk rebuilds	page 13
	Logical drive states	page 13
	SCSI drive states	page 14
	Disk array types	page 14
	Enclosure management	page 14

MegaRAID SCSI 320-0 - Host-Based RAID Solution

RAID products are either:

- · Host-based, or
- External.

The MegaRAID SCSI 320-0 controller is a host-based RAID solution. MegaRAID SCSI 320-0 is a PCI adapter card that is installed in a PCI expansion slot in a host system with a motherboard that contains the LSI Logic 53C1030 SCSI chip.

Host-Based

A host-based RAID product puts all of the RAID intelligence on an adapter card that is installed in a network server. A host-based RAID product provides the best performance. MegaRAID SCSI 320-0 is part of the file server, so it can transmit data directly across the computer's buses at data transfer speeds up to 132 MB/s.

The available sequential data transfer rate is determined by the following factors:

- The sustained data transfer rate on the motherboard PCI bus
- The sustained data transfer rate on the i960RM PCI to PCI bridge
- The sustained data transfer rate of the SCSI controller
- The sustained data transfer rate of the SCSI devices
- The number of SCSI channels
- The number of SCSI disk drives

Host-based solutions must provide operating system-specific drivers.

SCSI-to-SCSI External RAID

A SCSI-to-SCSI External RAID product puts the RAID intelligence inside the RAID chassis and uses a plain SCSI Host Adapter installed in the network server. The data transfer rate is limited to the bandwidth of the SCSI channel. A SCSI-to-SCSI RAID product that has two wide SCSI channels operating at speeds up to 320 MB/s must squeeze the data into a single wide SCSI (320 MB/s) channel back to the host computer.

In SCSI-to-SCSI RAID products, the hard drive subsystem uses only a single SCSI ID, which allows you to connect multiple drive subsystems to a single SCSI controller.

RAID Overview

RAID is a collection of specifications that describes a system for ensuring the reliability and stability of data stored on large disk subsystems. A RAID system can be implemented in a number of different versions (or RAID levels). MegaRAID SCSI 320-0 supports standard RAID levels 0, 1, and 5, and RAID levels 10 and 50, special RAID versions supported by MegaRAID SCSI 320-0.

Physical Array

A RAID array is a collection of physical disk drives governed by the RAID management software. A RAID array appears to the host computer as one or more logical drives.

Logical Drive

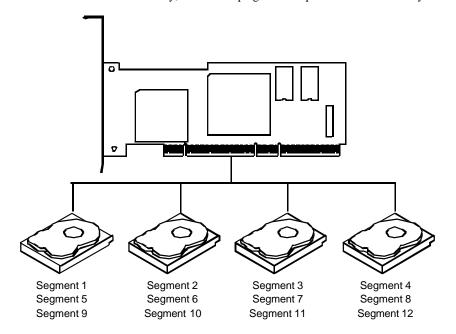
A logical drive is a partition in a physical array of disks that is made up of contiguous data segments on the physical disks. A logical drive can consist of any of the following:

- An entire physical array
- More than one entire physical array
- A part of an array
- Parts of more than one array
- A combination of any two of the above conditions

Consistency Check

In RAID, check consistency verifies the correctness of redundant data in an array. For example, in a system with distributed parity, checking consistency means computing the parity of the data drives and comparing the results to the contents of the parity drives.

Fault Tolerance


Fault tolerance is achieved through auto detection of failed drives, rebuilds with hot spare drive, the ability to hot swap drives, Configuration on Disk capability, and self-monitoring analysis and reporting technology (SMART) support. MegaRAID SCSI 320-0 provides hot swapping through the hot spare feature. A hot spare drive is an unused online available drive that MegaRAID SCSI 320-0 instantly plugs into the system when an active drive fails.

After the hot spare is automatically moved into the RAID subsystem, the failed drive is automatically rebuilt. The RAID disk array continues to handle request while the rebuild occurs.

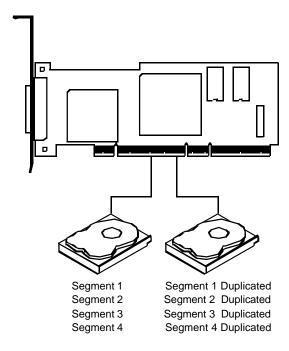
Disk Striping

Disk striping writes data across multiple disk drives instead of just one disk drive. Disk striping involves partitioning each drive storage space into stripes that can vary in size from 2 KB to 128 KB. These stripes are interleaved in a repeated sequential manner. The combined storage space is composed of stripes from each drive. MegaRAID SCSI 320-0 supports stripe sizes of 2 KB, 4 KB, 8 KB, 16 KB, 32 KB, 64 KB, or 128 KB.

For example, in a four-disk system using only disk striping (as in RAID level 0), segment 1 is written to disk 1, segment 2 is written to disk 2, and so on. Disk striping enhances performance because multiple drives are accessed simultaneously; but disk striping does not provide data redundancy.

Stripe Width

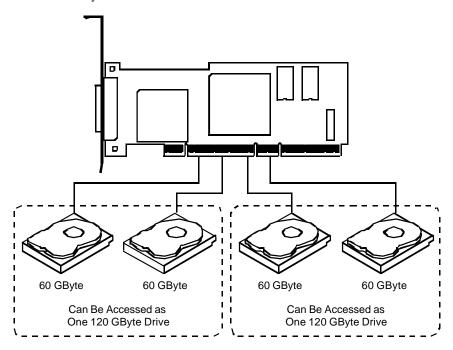
Stripe width is a measure of the number of disks involved in an array where striping is implemented. For example, a four-disk array with disk striping has a stripe width of four.


Stripe Size

The stripe size is the length of the interleaved data segments that MegaRAID SCSI 320-0 writes across multiple drives. MegaRAID SCSI 320-0 supports stripe sizes of 2 KB, 4 KB, 8 KB, 16 KB, 32 KB, 64 KB, or 128 KB.

Disk Mirroring

With mirroring (used in RAID 1), data written to one hard drive is simultaneously written to another hard drive. If one hard drive fails, the contents of the other disk drive can be used to run the system and reconstruct the failed drive. The primary advantage of disk mirroring is that it provides 100% data redundancy. Since the contents of the hard drive are completely written to a second drive, it does not matter if one of the drives fails. Both drives contain the same data at all times. Either drive can act as the operational drive.


Disk mirroring provides 100% redundancy, but is expensive because each drive in the system must be duplicated.

Disk Spanning

Disk spanning allows multiple disk drives to function like one big drive. Spanning overcomes lack of disk space and simplifies storage management by combining existing resources or adding relatively inexpensive resources. For example, four 60 GB disk drives can be combined to appear to the operating system as one single 240 GB drive.

Spanning alone does not provide reliability or performance enhancements. Spanned logical drives must have the same stripe size and must be contiguous. In the following graphic, RAID 1 array is turned into a RAID 10 array.

Spanning for RAID 10 or 50

Table 2-2 describes spanning for RAID 10, and 50.

Table 2-2. Spanning for RAID 10, or RAID 50

Level	Description
10	Configure RAID 10 by spanning two contiguous RAID 1 logical drives. The
	RAID 1 logical drives must have the same stripe size.
50	Configure RAID 50 by spanning two contiguous RAID 5 logical drives. The
	RAID 5 logical drives must have the same stripe size.
- 4	

Spanning two contiguous RAID 0 logical drives does not produce a new RAID level or add fault tolerance. It does increase the size of the logical volume and improves performance by doubling the number of spindles.

Parity

Parity generates a set of redundancy data from two or more parent data sets. The redundancy data can be used to reconstruct one of the parent data sets. Parity data does not fully duplicate the parent data sets. In RAID, this method is applied to entire drives or stripes across all disk drives in an array.

Table 2-3 describes distributed parity.

Table 2-3. Distributed Parity

Туре	Description	
Distributed Parity	The parity data is distributed across all drives in the	
	system.	

If a single disk drive fails, it can be rebuilt from the parity and the data on the remaining drives.

RAID level 5 combines distributed parity with disk striping. Parity provides redundancy for one drive failure without duplicating the contents of entire disk drives, but parity generation can slow the write process.

Hot Spares

A hot spare is an extra, unused disk drive that is part of the disk subsystem. It is usually in standby mode, ready for service if a drive fails. Hot spares permit you to replace failed drives without system shutdown or user intervention.

MegaRAID SCSI 320-0 implements automatic and transparent rebuilds using hot spare drives, providing a high degree of fault tolerance and zero downtime. The MegaRAID SCSI 320-0 RAID Management software allows you to specify physical drives as hot spares. When a hot spare is needed, the MegaRAID SCSI 320-0 controller assigns the hot spare that has a capacity closest to and at least as great as that of the failed drive to take the place of the failed drive.

Hot spares are employed only in arrays with redundancy, for example, RAID levels 1, 5, 10, and 50.

A hot spare connected to a specific MegaRAID SCSI 320-0 controller can be used only to rebuild a drive that is connected to the same controller.

Hot Swap

A hot swap is the manual replacement of a defective physical disk unit while the computer is still running. When a new drive has been installed, you must issue a command to rebuild the drive.

Disk Rebuild

You rebuild a hard drive by recreating the data that had been stored on the drive before the drive failed. Rebuilding can be done only in arrays with data redundancy such as RAID level 1, 5, 10, and 50.

Standby (warm spare) rebuild is employed in a mirrored (RAID 1) system. If a disk drive fails, an identical drive is immediately available. The primary data source disk drive is the original disk drive.

A hot spare can be used to rebuild disk drives in RAID 1, 5, 10, or 50 systems. If a hot spare is not available, the failed disk drive must be replaced with a new disk drive so that the data on the failed drive can be rebuilt.

The MegaRAID SCSI 320-0 controller automatically and transparently rebuilds failed drives with user-definable rebuild rates. If a hot spare is available, the rebuild starts automatically when a drive fails. MegaRAID SCSI 320-0 automatically restarts the system and the rebuild if the system goes down during a rebuild.

Rebuild Rate

The rebuild rate is the fraction of the compute cycles dedicated to rebuilding failed drives. A rebuild rate of 100 percent means the system is totally dedicated to rebuilding the failed drive.

The MegaRAID SCSI 320-0 rebuild rate can be configured between 0% and 100%. At 0%, the rebuild is only done if the system is not doing anything else. At 100%, the rebuild has a higher priority than any other system activity.

Logical Drive States

Table 2-4 describes the statuses for logical drives.

Table 2-4. Logical Drive States

State	Description
Optimal	The drive operating condition is good. All configured drives are online.
Dagwadad	
Degraded	The drive operating condition is not optimal. One of the configured
	drives has failed or is offline.
Failed	The drive has failed.
Offline	The drive is not available to MegaRAID SCSI 320-0.

SCSI Drive States

Table 2-5 SCSI disk drive can be in one of the states described in Table 2-5.

Table 2-5. SCSI Drive States

State	Description
Online	The drive is functioning normally and is a part of a configured
(ONLIN)	logical drive.
Ready	The drive is functioning normally but is not part of a configured
(READY)	logical drive and is not designated as a hot spare.
Hot Spare	The drive is powered up and ready for use as a spare in case an
(HOTSP)	online drive fails.
Fail	A fault has occurred in the drive placing it out of service.
(FAIL)	
Rebuild	The drive is being rebuilt with data from a failed drive.
(REB)	

Disk Array Types

Table 2-6 describes the RAID disk array types.

Table 2-6. Disk Array Types

Туре	Description	
Software-	The array is managed by software running in a host computer using	
Based	the host CPU bandwidth. The disadvantages associated with this	
	method are the load on the host CPU and the need for different	
	software for each operating system.	
SCSI to SCSI	The array controller resides outside of the host computer and	
	communicates with the host through a SCSI adapter in the host.	
	The array management software runs in the controller. It is	
	transparent to the host and independent of the host operating	
	system. The disadvantage is the limited data transfer rate of the	
	SCSI channel between the SCSI adapter and the array controller.	
Bus-Based	The array controller resides on the bus (for example, a PCI or EISA	
	bus) in the host computer and has its own CPU to generate the	
	parity and handle other RAID functions. A bus-based controller can	
	transfer data at the speed of the host bus (PCI, ISA, EISA, VL-	
	Bus) but is limited to the bus it is designed for. MegaRAID SCSI	
	320-0 resides on a PCI bus, which can handle data transfer at up to	
	132 MB/s. With MegaRAID SCSI 320-0, the channel can handle	
	data transfer rates up to 320 MB/s per SCSI channel.	

Enclosure Management

Enclosure management is the intelligent monitoring of the disk subsystem by software and/or hardware.

The disk subsystem can be part of the host computer or separate from it. Enclosure management helps you stay informed of events in the disk subsystem, such as a drive or power supply failure. Enclosure management increases the fault tolerance of the disk subsystem.

Chapter 3 RAID Levels

MegaRAID SCSI 320-0 supports RAID levels 0, 1, 5, 10, and 50. This chapter describes each RAID level, and the factors to consider when choosing one.

Selecting a RAID Level

To ensure the best performance, you should select the optimal RAID level when you create a system drive. The optimal RAID level for your disk array depends on a number of factors:

- The number of drives in the disk array
- The capacity of the drives in the array
- The need for data redundancy
- The disk performance requirements

Selecting a RAID Level

The factors you need to consider when selecting a RAID level are listed in the following table.

Table 3-2. Factors for Selecting RAID Levels

Level	Description and	Pros	Cons	Мах.	Fault
	Use			Drives	Tolerant
0	Data divided in blocks and distributed sequentially (pure striping). Use for non-critical data that requires high performance.	High data throughput for large files	No fault tolerance. All data lost if any drive fails.	One to 30	No
1	Data duplicated on another disk (mirroring). Use for read-intensive fault- tolerant systems.	100% data redundancy	Doubles disk space. Reduced performance during rebuilds.	Two	Yes
5	Disk striping and parity data across all drives. Use for high read volume but low write volume, such as transaction processing.	Achieves data redundancy at low cost	Performance not as good as RAID 1	Three to 30	Yes
10	Data striping and mirrored drives.	High data transfers, complete redundancy	More complicated	Four to 18 (must be a multiple of two)	Yes
50	Disk striping and parity data across all drives.	High data transfers, redundancy	More complicated	Six to 30	Yes

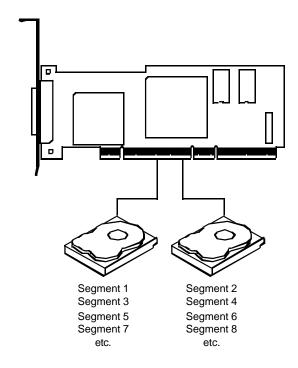
NOTE: The maximum number of physical drives supported by the SCSI 320-0 controller is 15.

RAID 0 provides disk striping across all drives in the RAID subsystem. RAID 0 does not provide any data redundancy, but does offer the best performance of any RAID level. RAID 0 breaks up data into smaller blocks and then writes a block to each drive in the array. The size of each block is determined by the stripe size parameter, set during the creation of the RAID set. RAID 0 offers high bandwidth. By breaking up a large file into smaller blocks, MegaRAID SCSI 320-0 can use several drives to read or write the file faster. RAID 0 involves no parity calculations to complicate the write operation. This makes RAID 0 ideal for applications that require high bandwidth but do not require fault tolerance.

Uses RAID 0 provides high data throughput, especially for large

files. Any environment that does not require fault tolerance.

Strong Points Provides increased data throughput for large files. No capacity


loss penalty for parity.

Weak Points Does not provide fault tolerance. All data lost if any drive fails.

Drives One to 30

The initiator takes one ID per channel. This leaves 15 IDs

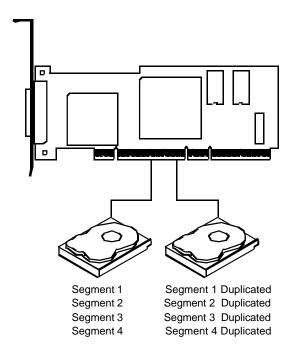
available for one channel.

In RAID 1, MegaRAID SCSI 320-0 duplicates all data from one drive to a second drive. RAID 1 provides complete data redundancy, but at the cost of doubling the required data storage capacity.

Uses Use RAID 1 for small databases or any other environment

that requires fault tolerance but small capacity.

Strong Points RAID 1 provides complete data redundancy. RAID 1 is


ideal for any application that requires fault tolerance and

minimal capacity.

Weak Points RAID 1 requires twice as many disk drives. Performance is

impaired during drive rebuilds.

Drives Two

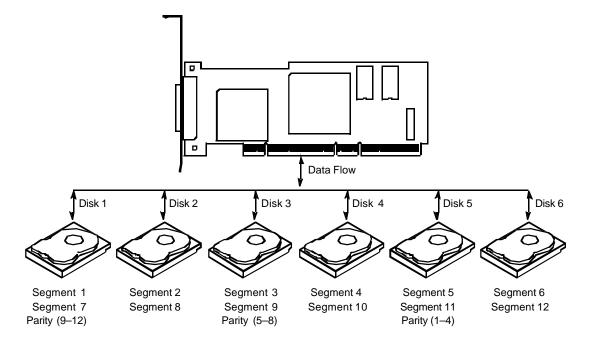
RAID 5 includes disk striping at the byte level and parity. In RAID 5, the parity information is written to several drives. RAID 5 is best suited for networks that perform a lot of small I/O transactions simultaneously.

RAID 5 addresses the bottleneck issue for random I/O operations. Since each drive contains both data and parity numerous writes can take place concurrently. In addition, robust caching algorithms and hardware based exclusive-or assist make RAID 5 performance exceptional in many different environments.

Uses RAID 5 provides high data throughput, especially for large

files. Use RAID 5 for transaction processing applications because each drive can read and write independently. If a drive fails, MegaRAID SCSI 320-0 uses the parity drive to recreate all missing information. Use also for office automation and online customer service that requires fault tolerance. Use for any application that has high read request

rates but low write request rates.


Strong Points Provides data redundancy and good performance in most

environments

Weak Points Disk drive performance will be reduced if a drive is being

rebuilt. Environments with few processes do not perform as well because the RAID overhead is not offset by the performance gains in handling simultaneous processes.

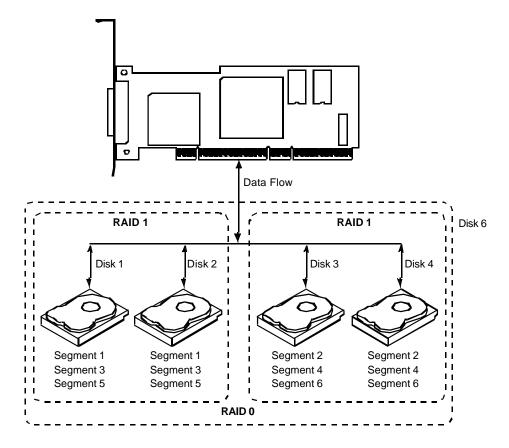
Drives Three to 30

RAID 10 is a combination of RAID 0 and RAID 1. RAID 10 has mirrored drives. RAID 10 breaks up data into smaller blocks, and then stripes the blocks of data to each RAID 1 raid set. Each RAID 1 raid set then duplicates its data to its other drive. The size of each block is determined by the stripe size parameter, which is set during the creation of the RAID set. RAID 10 can sustain one to four drive failures while maintaining data integrity if each failed disk is in a different RAID 1 array.

Uses RAID 10 works best for data storage that must have 100%

redundancy of mirrored arrays and that also needs the enhanced I/O performance of RAID 0 (striped arrays). RAID 10 works well for medium-sized databases or any environment that requires a higher degree of fault tolerance

and moderate to medium capacity.


Strong Points RAID 10 provides both high data transfer rates and

complete data redundancy.

Weak Points RAID 10 requires twice as many drives as all other RAID

levels except RAID 1.

Drives Four to 18

RAID 50 provides the features of both RAID 0 and RAID 5. RAID 50 includes both parity and disk striping across multiple drives. RAID 50 is best implemented on two RAID 5 disk arrays with data striped across both disk arrays. RAID 50 breaks up data into smaller blocks, and then stripes the blocks of data to each RAID 5 raid set. RAID 5 breaks up data into smaller blocks, calculates parity by performing an exclusive-or on the blocks, and then writes the blocks of data and parity to each drive in the array. The size of each block is determined by the stripe size parameter, which is set during the creation of the RAID set.

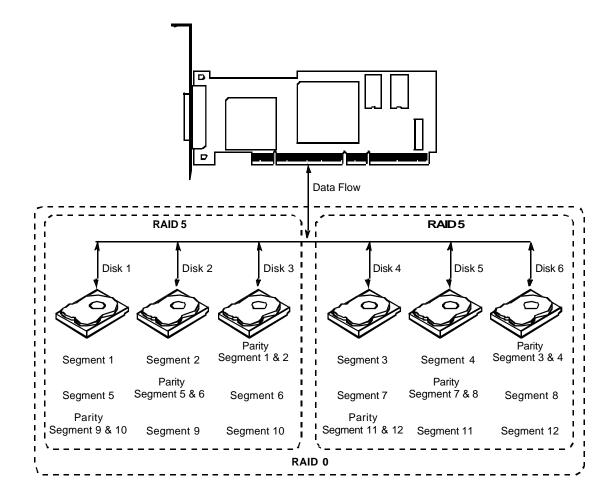
RAID 50 can sustain one to four drive failures while maintaining data integrity if each failed disk is in a different RAID 5 array.

Uses RAID 50 works best when used with data that requires high

reliability, high request rates, and high data transfer and

medium to large capacity.

Strong Points RAID 50 provides high data throughput, data redundancy,


and very good performance.

Weak Points Requires 2 to 4 times as many parity drives as RAID 5.

Drives Six to 30

The initiator takes one ID per channel. This leaves 15 IDs

available for one channel.

Chapter 4 Features

MegaRAID is a family of high performance intelligent PCI-to-SCSI host adapters with RAID control capabilities. MegaRAID SCSI 320-0 supports Ultra320 and Wide SCSI at data transfer rates up to 320 MB/s, and up to 15 Wide devices and up to seven non-Wide devices.

In This Chapter

Topics described in this chapter include:

- Configuration features
- Hardware architecture features
- Array performance features
- RAID management features
- Fault tolerance features
- Utility programs
- Software drivers

SMART Technology

The MegaRAID SCSI 320-0 Self Monitoring Analysis and Reporting Technology (SMART) detects up to 70% of all predictable drive failures. SMART monitors the internal performance of all motors, heads, and drive electronics.

Configuration on Disk

Configuration on Disk (drive roaming) saves configuration information both in non-volatile random access memory (NVRAM) on MegaRAID SCSI 320-0, and on the disk drives connected to MegaRAID SCSI 320-0. If MegaRAID SCSI 320-0 is replaced, the new MegaRAID SCSI 320-0 controller can detect the actual RAID configuration, maintaining the integrity of the data on each drive, even if the drives have changed channel and/or target ID.

Hardware Requirements

MegaRAID SCSI 320-0 can be installed in a special PCI expansion slot in a computer with a motherboard that has the LSI Logic 53C1030 SCSI chip. The computer must support PCI version 2.2 or later. The computer should have an Intel Pentium, Pentium Pro, or more powerful CPU, a floppy drive, a color monitor and VGA adapter card, a mouse, and a keyboard.

Configuration Features

Table 4-1 contains the configuration features for the MegaRAID 320-0.

Table 4-1. Configuration Features

Specification	Feature
RAID levels	0, 1, 5, 10, and 50
SCSI channels	0
Maximum number of drives per channel	15
Array interface to host	PCI 2.2
Drive interface	Fast and Wide, Ultra320 single-ended and low-voltage differential (LVD)
Upgradeable cache size	Cache memory onboard
Cache function	Write-through, write-back, adaptive read-ahead, no read-ahead, read-ahead
Multiple logical drives/arrays per controller	Up to 40 logical drives per controller
Maximum number of MegaRAID SCSI 320-0 controllers per system	1
Online capacity expansion	Yes
Hot spare support	Yes
Flashable firmware	Yes
Hot swap devices supported	Yes
Non-disk devices supported	Yes
Mixed capacity hard disk drives	Yes
Support for hard disk drives with capacities of more than 8 GB.	Yes
Clustering support (Failover control)	No
Online RAID level migration	Yes
RAID remapping	Yes
No reboot necessary after expansion	Yes
More than 200 Qtags per physical drive	Yes
Hardware clustering support on the board	Yes
User-specified rebuild rate	Yes

Array Performance Features

Table 4-2 lists the array performance features.

Table 4-2. Array Performance Features

Specification	Feature
Host data transfer rate	533 MB/s
Drive data transfer rate	320 MB/s
Stripe sizes	2 KB, 4 KB, 8 KB, 16 KB, 32 KB, 64
	KB, or 128 KB

RAID Management Features

Table 4-3 lists the RAID management features.

Table 4-3. RAID Management Features

Specification	Feature
Support for SNMP	Yes
Performance Monitor provided	Yes
Remote control and monitoring	Yes
Support for concurrent multiple stripe sizes	Yes
Windows NT, 2000, XP, and .NET server support	Yes
using a GUI client utility	

Fault Tolerance Features

Table 4-4 lists the fault tolerance features.

Table 4-4. Fault Tolerance Features

Specification	Feature
Support for SMART	Yes
Enclosure management	SCSI-accessed fault- tolerant enclosure (SAF-TE) compliant
Drive failure detection	Automatic
Drive rebuild using hot spares	Automatic
Parity generation for RAID	Hardware

Software Utilities

Table 4-5 lists the software utility features.

Table 4-5. Software Utilities

Specification	Feature
Graphical user interface	Yes
Management utility	Yes
Bootup configuration using MegaRAID Manager	Yes
Online read, write, and cache policy switching	Yes

Operating System Software Drivers

Operating System Drivers

MegaRAID SCSI 320-1 includes a DOS software configuration utility, and drivers for:

- Windows NT 4.0
- Windows 2000
- Windows .NET
- Windows XP
- Novell NetWare 5.1, 6.0
- Red Hat Linux 7.2, 7.3
- DOS

The DOS drivers for MegaRAID are contained in the firmware on MegaRAID except the DOS ASPI® and CD drivers. Call LSI Logic Technical Support at 678-728-1250 or access the web site at www.lsilogic.com for information about drivers for other operating systems.

MegaRAID SCSI 320-0 Specifications

Table 4-6 lists the specifications for the SCSI 320-0.

Table 4-6. MegaRAID SCSI 320-0 Specifications

Parameter	Specification
Card size	2.536 x 6.6 inches (low-profile PCI)
Processor	Intel GC80302 integrated I/O processor
Bus type	PCI 2.2
PCI controller	Intel GC80302
Bus data transfer rate	Up to 132 MB/s
BIOS	MegaRAID BIOS
Cache configuration	Predefined during manufacturing; ECC through a 66MHz 72-bit unbuffered 3.3V SDRAM.
Firmware	1 MB × 8 flash ROM
Non-volatile RAM	32 KB × 8 for storing RAID configuration
Operating voltage	5.00 V ± 0.25 V
SCSI data transfer rate	Up to 320 MB/s
SCSI device types supported	Synchronous or asynchronous. Disk and non-disk.
RAID levels supported	0, 1, 5, 10, and 50

PCI Bridge/CPU

MegaRAID SCSI 320-0 uses the Intel i960RM PCI bridge with an embedded 80960JX RISC processor running at 66 MHz. The RM bridge handles data transfers between the primary (host) PCI bus, the secondary PCI bus, cache memory, and the SCSI bus. The DMA controller supports chaining and unaligned data transfers. The embedded 80960JX CPU directs all controller functions, including command processing, SCSI bus transfers, RAID processing, drive rebuilding, cache management, and error recovery.

Cache Memory

MegaRAID SCSI 320-0 supports 32 MB to 128 MB ECC SDRAM DIMM on-board cache memory. MegaRAID supports write-through or write-back caching, which can be selected for each logical drive. To improve performance in sequential disk accesses, MegaRAID does not use read-ahead caching for the current logical drive. The default setting for the read policy is *Normal*, meaning no read-ahead caching. You can disable read-ahead caching.

Marning!

Write caching is not recommended for the physical drives. When write cache is enabled, loss of data can occur when power is interrupted.

MegaRAID BIOS

The BIOS resides on a 1 MB × 8 flash ROM for easy upgrade. The MegaRAID BIOS supports INT 13h calls to boot DOS without special software or device drivers. The MegaRAID BIOS provides an extensive setup utility that can be accessed by pressing <Ctrl><M> at BIOS initialization. The MegaRAID BIOS Configuration Utility is described in the MegaRAID Configuration Software Guide.

SCSI Firmware

The MegaRAID SCSI 320-0 firmware handles all RAID and SCSI command processing and also supports the items in Table 4-7.

Table 4-7. SCSI Firmware

Feature	Description
Disconnect/	Optimizes SCSI bus seek.
reconnect	
Stripe size	Variable for all logical drives: 2 KB, 4 KB, 8 KB, 16 KB, 32
	KB, 64 KB, or 128 KB.
Rebuild	Multiple rebuilds and consistency checks with user-definable
	priority.

RAID Management

RAID management is provided by software utilities that manage and configure the RAID system and MegaRAID SCSI 320-0, create and manage multiple disk arrays, control and monitor multiple RAID servers, provide error statistics logging, and provide online maintenance. They include:

- MegaRAID BIOS Configuration Utility
- WebBIOS Configuration Utility
- Power Console Plus
- MegaRAID Manager

MegaRAID BIOS Configuration Utility

BIOS Configuration Utility is used to configure and maintain RAID arrays, format hard drives, and manage the RAID system. It is independent of any operating system. See the *MegaRAID Configuration Software Guide* for additional information.

WebBIOS Configuration Utility

The WebBIOS Configuration Utility is an HTML-based utility used to configure and maintain RAID arrays, format hard drives, and manage the RAID system. See the *MegaRAID Configuration Software Guide* for additional information.

Power Console Plus

Power Console Plus runs in Windows NT, 2000, XP, and .NET. It configures, monitors, and maintains multiple RAID servers from any network node or a remote location. See the *MegaRAID Configuration Software Guide* for additional information.

MegaRAID Manager

This is a character-based utility that works in DOS, Novell NetWare, and Red Hat Linux. See the *MegaRAID Configuration Software Guide* for additional information.

Fault-Tolerance Features

The MegaRAID SCSI 320-0 fault-tolerance features are:

- Automatic failed drive detection
- Automatic failed drive rebuild with no user intervention required
- Hot swap manual replacement without bringing the system down
- SAF-TE compliant enclosure management

Detect Failed Drive

The MegaRAID SCSI 320-0 firmware automatically detects and rebuilds failed drives. This can be done transparently with hot spares.

Hot Swap

MegaRAID SCSI 320-0 supports the manual replacement of a disk unit in the RAID subsystem without system shutdown.

Compatibility

MegaRAID SCSI 320-0 compatibility issues include:

- Server management
- SCSI device compatibility
- Software compatibility

Server Management

As a simple network management protocol (SNMP) agent, MegaRAID SCSI 320-0 supports all SNMP managers.

SCSI Device Compatibility

MegaRAID SCSI 320-0 supports SCSI hard drives, CD drives, and tape drives.

Software

All SCSI backup and utility software should work with MegaRAID SCSI 320-0. This software is not provided with MegaRAID SCSI 320-0.

Chapter 5 Configuring MegaRAID SCSI 320-0

Configuring SCSI Physical Drives

SCSI Channel

Physical SCSI drives must be organized into logical drives. The arrays and logical drives that you construct must be able to support the RAID level that you select. The MegaRAID SCSI 320-0 controller does not have a SCSI channel; the number of SCSI channels depends on the SCSI controller on the motherboard.

Basic Configuration Rules

You should observe the following guidelines when connecting and configuring SCSI devices in a RAID array:

- You can place up to 15 physical drives in an array, depending on the RAID level.
- Include all drives that have the same capacity to the same array.
- Make sure any hot spare has a capacity that is at least as large as the largest drive that may be replaced by the hot spare.
- When replacing a failed drive, make sure that the replacement drive has a capacity that is at least as large as the drive being replaced.

V NOTE: Be sure to back up your data regularly, even when using RAID.

Current Configuration

Use Table 5-1 to describe the current configuration for your physical devices.

Table 5-1. MegaRAID SCSI 320-0 Specifications

SCSI ID	Device Description	Termination?
0		
1		
2		
3		
4		
5		
6		
8		
9		

SCSI ID	Device Description	Termination?
10		
11		
12		
13		
14		
15		

Logical Drive Configuration

Use Table 5-2 to record the configuration for your logical drives.

Table 5-2. Logical Drive Configuration

Logical Drive	RAID Level	Stripe Size	Logical Drive Size	Cache Policy	Read Policy	Write Policy	Number of Physical Drives
LD0							
LD1							
LD2							
LD3							
LD4							
LD5							
LD6							
LD7							
LD8							
LD9							
LD10							
LD11							
LD12							
LD13							
LD14							
LD15							
LD16							
LD17							
LD18							
LD19							
LD20							
LD21							
LD22							
LD23							
LD24							
LD25							
LD26							
LD27							
LD28							
LD29							
LD30							

Logical Drive	RAID Level	Stripe Size	Logical Drive Size	Cache Policy	Read Policy	Write Policy	Number of Physical Drives
LD31							
LD32							
LD33							
LD34							
LD35							
LD36							
LD37							
LD38							
LD39							

Physical Device Layout

Use Table 5-3 to record the physical device layout.

Table 5-3. Physical Device Layout

bie 5-5. i Hysical Device La	Channel 0	Channel 1
Target ID		
Device type		
Logical drive number/Drive		
number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive		
number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive		
number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive		
number		

	Channel 0	Channel 1
Manufacturer/Model number	STATITICE O	GRAFITICE I
Firmware level		
Target ID		
Device type		
Logical drive number/Drive		
number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive		
number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive		
number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive		
number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive		
number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive		
number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive		
number		
Manufacturer/Model number		
Firmware level		
Target ID		

	Channel 0	Channel 1
Device type		
Logical drive number/Drive		
number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive		
number		
Manufacturer/Model number		
Firmware level		
Target ID		
Device type		
Logical drive number/Drive		
number		
Manufacturer/Model number		
Firmware level		

Configuring Arrays

Organize the physical disk drives in arrays after the drives are connected to MegaRAID SCSI 320-0, formatted, and initialized. An array can consist of up to 15 physical disk drives, depending on the RAID level.

MegaRAID SCSI 320-0 supports up to eight arrays. The number of drives in an array determines the RAID levels that can be supported.

Arranging Arrays

You must arrange the arrays to provide additional organization for the drive array. You must arrange arrays so that you can create system drives that can function as boot devices.

You can sequentially arrange arrays with an identical number of drives so that the drives in the group are spanned. Spanned drives can be treated as one large drive. Data can be striped across multiple arrays as one logical drive.

You can create spanned drives by using the MegaRAID BIOS Setup utility or the MegaRAID Manager.

Creating Hot Spares

Any drive that is present, formatted, and initialized, but is not included in a array or logical drive is automatically designated as a hot spare.

You can designate drives as hot spares using the MegaRAID BIOS Configuration Utility, the MegaRAID Manager, or Power Console Plus.

Creating Logical Drives

Logical drives are arrays or spanned arrays that are presented to the operating system. You must create one or more logical drives.

The logical drive capacity can include all or any portion of an array. The logical drive capacity can also be larger than an array by using spanning. MegaRAID SCSI 320-0 supports up to 40 logical drives.

Configuration Strategies

The most important factors in RAID array configuration are: drive capacity, drive availability (fault tolerance), and drive performance. You cannot configure a logical drive that optimizes all three factors, but it is easy to choose a logical drive configuration that maximizes one factor at the expense of the other two factors, although needs are seldom that simple.

Maximize Capacity

RAID 0 achieves maximum drive capacity, but does not provide data redundancy. Maximum drive capacity for each RAID level is shown below. OEM-level firmware that can span up to 4 logical drives is assumed.

Table 5-4 describes the RAID levels, including the number of drives required, and the capacity.

Table 5-4. Capacity for RAID Levels

RAID Level	Description	Drives Required	Capacity
0	Striping without parity	1 – 30	(Number of disks) X capacity of smallest disk
1	Mirroring	2	(Capacity of smallest disk) X (1)
5	Striping with floating parity drive	3 – 130	(Number of disks) X (capacity of smallest disk) - (capacity of 1 disk)
10	Mirroring and Striping	4 – 18 (Must be a multiple of 2.)	(Number of disks) X (capacity of smallest disk) / (2)
50	RAID 5 and Striping	6 – 30 (Must be a multiple of arrays.)	(Number of disks) X (capacity of smallest disk) – (capacity of 1 disk X number of Arrays)

Maximizing Drive Availability

You can maximize the availability of data on the physical disk drive in the logical array by maximizing the level of fault tolerance. Table 5-5 describes the levels of fault tolerance for the RAID levels.

Table 5-5. Fault Tolerance for RAID Levels

RAID Level	Fault Tolerance Protection
0	No fault tolerance.
1	Disk mirroring, which provides 100% data redundancy.
5	100% protection through striping and parity. The data is striped and parity data is written across a number of physical disk drives.
10	100% protection through data mirroring.
50	100% protection through data striping and parity. All data is striped and parity data is written across all drives in two or more arrays.

Maximizing Drive Performance

You can configure an array for optimal performance. But optimal drive configuration for one type of application will probably not be optimal for any other application. A basic guideline of the performance characteristics for RAID drive arrays at each RAID level is shown in Table 5-6.

Table 5-6. Performance Characteristics for RAID Levels

RAID Level	Performance Characteristics
0	Excellent for all types of I/O activity, but provides no data
	security.
1	Provides data redundancy and good performance.
5	Provides data redundancy and good performance in most
	environments.
10	Provides data redundancy and excellent performance.
50	Provides data redundancy and very good performance.

Assigning RAID Levels

Only one RAID level can be assigned to each logical drive. The drives required per RAID level is shown in the following table.

Table 5-7. Number of Physical Drives for RAID Levels

RAID	Minimum Number of	Maximum Number of Physical
Level	Physical Drives	Drives
0	1	30
1	2	2
5	3	30
10	4	18
50	6	30

38

Configuring Logical Drives

After you have installed the MegaRAID SCSI 320-0 controller in the server and have attached all physical disk drives, perform the following actions to prepare a RAID disk array:

Table 5-8. Procedure for Configuring Logical Drives

Step	Action
1	Optimize the MegaRAID SCSI 320-0 controller options for your system.
	See Chapter 6 for additional information.
2	Perform a low-level format the SCSI drives that will be included in the
	array and the drives to be used for hot spares.
3	Press <ctrl><m> to run the BIOS Configuration Utility.</m></ctrl>
4	Customize the RAID array and define and configure one or more logical
	drives by selecting Easy Configuration or New Configuration.
5	Create and configure one or more system drives (logical drives) by
	selecting the RAID level, cache policy, read policy, and write policy.
6	Save the configuration.
7	Initialize the system drives.
	After initialization, you can install the operating system.

Optimizing Data Storage

Data Access Requirements

Each type of data stored in the disk subsystem has a different frequency of read and write activity. If you know the data access requirements, you can more successfully determine a strategy for optimizing the disk subsystem capacity, availability, and performance.

Servers that support Video on Demand typically read the data often, but write data infrequently. Both the read and write operations tend to be long. Data stored on a general-purpose file server involves relatively short read and write operations with relatively small files.

Array Functions

You must first define the major purpose of the disk array. Will this disk array increase the system storage capacity for general-purpose file and print servers? Does this disk array support any software system that must be available 24 hours per day? Will the information stored in this disk array contain large audio or video files that must be available on demand? Will this disk array contain data from an imaging system?

You must identify the purpose of the data to be stored in the disk subsystem before you can confidently choose a RAID level and a RAID configuration.

Planning the Array Configuration

Fill out Table 5-9 to help plan this array.

Table 5-9. Factors for Planning the Array Configuration

Question	Answer
Number of physical disk drives in the array	
Purpose of this array. Rank the following factors:	
Maximize drive capacity	
Maximize the safety of the data (fault tolerance)	
Maximize hard drive performance and throughput	
Number of hot spares	
Amount of cache memory installed on MegaRAID SCSI 320-0	
Are all of the disk drives and the server protected by a UPS?	

Using the Array Configuration Planner

The following table lists the possible RAID levels, fault tolerance, and effective capacity for all possible drive configurations for an array consisting of one to eight drives. This table does not take into account any hot spare (standby) drives. You should always have a hot spare drive in case of drive failure. RAID 1 requires two drives, RAID 10 at least four, and RAID 50 at least six.

Array Configuration Planner

Use Table 5-10 to describe the current configuration for your physical devices.

Table 5-10. Array Configuration Planner

Number of	Possible	Relative	Fault	Effective
Drives	RAID Levels	Performance	Tolerance	Capacity
1	None	Excellent	No	100%
1	RAID 0	Excellent	No	100%
2	None	Excellent	No	100%
2	RAID 0	Excellent	No	100%
2	RAID 1	Good	Yes	50%
3	None	Excellent	No	100%
3	RAID 0	Excellent	No	100%
3	RAID 5	Good	Yes	67%
4	None	Excellent	No	100%
4	RAID 0	Excellent	No	100%
4	RAID 5	Good	Yes	75%
4	RAID 10	Good	Yes	50%
5	None	Excellent	No	100%
5	RAID 0	Excellent	No	100%
5	RAID 5	Good	Yes	80%
6	None	Excellent	No	100%
6	RAID 0	Excellent	No	100%
6	RAID 5	Good	Yes	83%
6	RAID 10	Good	Yes	50%
6	RAID 50	Good	Yes	67%
7	None	Excellent	No	100%
7	RAID 0	Excellent	No	100%
7	RAID 5	Good	Yes	86%
8	None	Excellent	No	100%
8	RAID 0	Excellent	No	100%
8	RAID 5	Good	Yes	87%
8	RAID 10	Good	Yes	50%
8	RAID 50	Good	Yes	75%

Chapter 6 *Hardware Installation*

Requirements

You must have the following for hardware installation:

- A MegaRAID SCSI 320-0 controller
- A host computer with a specific ZCR PCI expansion slot
- The MegaRAID SCSI 320-0 Installation CD
- An Uninterruptible Power Supply (UPS) for the entire system
- Ultra320, Ultra, Fast SCSI 2 or Wide SCSI hard disk drives

Checklist

Table 6-1 contains a checklist of the steps for installation.

Table 6-1. Checklist for Installation

Check	Step	Action
	1	Turn all power off to the server and all hard drives, enclosures, and
		system components.
	2	Prepare the host system. See the host system technical documentation.
	3	Determine the SCSI ID and SCSI termination requirements.
	4	Make sure the jumper settings on the MegaRAID SCSI 320-0
		controller are correct.
	5	Install the MegaRAID in the server.
	6	Perform a safety check. Make sure the MegaRAID card is properly
		installed. Turn power on after completing the safety check.
	7	Install and configure the MegaRAID software utilities and drivers.
	8	Format the hard disk drives as needed.
	9	Configure system drives (logical drives).
	10	Initialize the logical drives.
	11	Install the network operating system drivers as needed.

Installation Steps

MegaRAID SCSI 320-0 provides extensive customization options. If you need only basic MegaRAID SCSI 320-0 features and your computer does not use other adapter cards with resource settings that may conflict with MegaRAID SCSI 320-0 settings, even custom installation can be quick and easy.

Table 6-2 lists the hardware installation steps. Each step is described in detail in the following pages.

Table 6-2. MegaRAID SCSI 320-0 Specifications

Step	Action	Additional Information
1	Unpack the MegaRAID controller and inspect for damage. Make sure all items are in the package.	If damaged, call your LSI Logic OEM support representative.
2	Turn the computer off and remove the cover.	
3	Make sure the motherboard jumper settings are correct.	
4	Check the jumper settings on the MegaRAID SCSI 320-0 controller.	See page 45 for the MegaRAID SCSI 320-0 jumper settings.
5	Install the MegaRAID SCSI 320-0 card.	
6	Replace the computer cover and turn the power on.	Be sure the SCSI devices are powered up before or at the same time as the host computer.
7	Run MegaRAID BIOS Configuration Utility.	Optional.
8	Install software drivers for the desired operating systems.	

Step 1 Unpack

Unpack and install the hardware in a static-free environment. The MegaRAID SCSI 320-0 controller card is packed inside an anti-static bag between two sponge sheets. Remove the controller card and inspect it for damage. If the card appears damaged, or if any item listed below is missing, contact LSI Logic or your MegaRAID OEM support representative. The MegaRAID SCSI 320-0 controller is also shipped with the following:

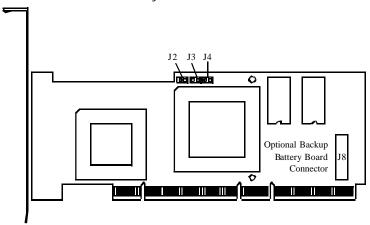
- The MegaRAID Configuration Software Guide (on CD)
- The MegaRAID Operating System Driver Installation Guide (on CD)
- The MegaRAID SCSI 320-0 ZCR Hardware Guide (on CD)
- The software license agreement (on CD)
- The MegaRAID SCSI 320-0 configuration utilities for DOS (on CD)
- The warranty registration card

Step 2 Power Down

Turn off the computer, remove the power cord, then remove the cover. Make sure the computer is turned off and disconnected from any networks before installing the controller card.

Step 3 Configure Motherboard

Make sure the motherboard is configured correctly for MegaRAID SCSI 320-0. Each MegaRAID SCSI 320-0 card you install requires an available PCI IRQ.


Step 4 Set Jumpers

Make sure the jumper settings on the MegaRAID SCSI 320-0 card are correct. The jumpers are set at the factory and you probably do not need to change them. Table 6-3 lists the jumpers.

Table 6-3. Jumpers for the MegaRAID SCSI 320-0

Connector	Description	Туре
J2	Dirty cache LED	2-pin header
J3	Clears EPROM	2-pin header
J4	BIOS enable	2-pin header

MegaRAID SCSI 320-0 Card Layout

J2 Dirty Cache LED

J2 is a two-pin header for the dirty cache LED. This can be connected to an LED on the computer enclosure. The LED will be lit when data in the cache has not yet been written to the storage device. that is used to clear the configuration data in the non-volatile random access memory.

J3 Clears EPROM

J3 is a two-pin header that clears the erasable progammable read-only memory (EPROM) configuration data.

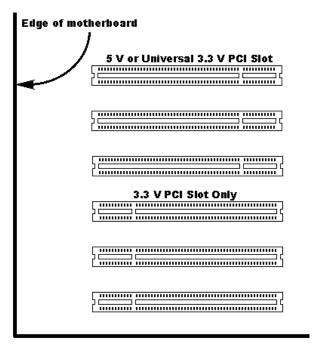
J4 BIOS Enable

J4 is a 2-pin header that enables or disables MegaRAID onboard BIOS. The onboard BIOS should be enabled (J4 unjumpered) for normal board position. Table 6-4 contains the pinout for J4.

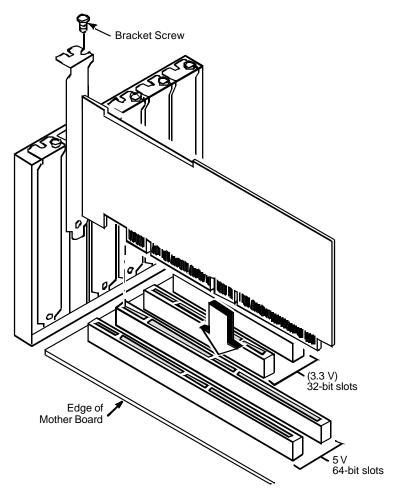
Table 6-4. Pinout for J4 BIOS Enable

J4 Setting	Onboard BIOS Status
Unjumpered	Enabled
Jumpered	Disabled

J8 Connector for Optional BBU Daughter Card


J8 is 40-pin connector that is used to mount an optional battery backup unit that is on a daughtercard.

Step 5 Install MegaRAID SCSI 320-0


Select the ZCR 3.3 V or 5 V PCI slot and align the MegaRAID SCSI 320-0 controller card bus connector to the slot.

NOTE: The slot must be a specific ZCR slot on a motherboard that contains the LSI Logic 53C1030 SCSI chip; see your motherboard manual for this information.

Press down gently but firmly to make sure that the card is properly seated in the slot. The bottom edge of the controller card should be flush with the slot.

Insert the MegaRAID SCSI 320-0 card in the ZCR PCI slot as shown below. Screw the bracket to the computer frame.

Step 6 Power Up

Replace the computer cover and reconnect the AC power cords. Turn power on to the host computer. Set up the power supplies so that the SCSI devices are powered up at the same time as or before the host computer. If the computer is powered up before a SCSI device, the device might not be recognized.

During boot, the MegaRAID SCSI 320-0 BIOS message appears:

```
MegaRAID SCSI 320-0 Disk Array Adapter BIOS Version x.xx date Copyright (c) LSI Logic Corporation Firmware Initializing... [ Scanning SCSI Device ...(etc.)... ]
```

The firmware takes several seconds to initialize. During this time the adapter will scan the SCSI channel. When ready, the following appears:

```
Host Adapter-1 Firmware Version x.xx DRAM Size 16 MB
0 Logical Drives found on the Host Adapter
0 Logical Drives handled by BIOS
Press <Ctrl><M> to run MegaRAID SCSI 320-0 BIOS Configuration
    Utility
```

The <Ctrl><M> utility prompt times out after several seconds. The MegaRAID SCSI 320-0 host adapter (controller) number, firmware version, and cache DRAM size are displayed in the second portion of the BIOS message. The numbering of the controllers follows the PCI slot scanning order used by the host motherboard.

Step 7 Run the MegaRAID BIOS Configuration Utility

Press <Ctrl><M> to run the MegaRAID BIOS Configuration Utility. See the *MegaRAID Configuration Software Guide* for information about running this utility.

Step 8: Install the Operating System Driver

MegaRAID can operate under MS-DOS® or any DOS-compatible operating system using the standard AT BIOS INT 13h Hard Disk Drive interface. To operate with other operating systems, you must install software drivers. MegaRAID provides software drivers on the Driver and Documentation CD for the following operating systems:

- MS-DOS® version 6.xx or later
- Microsoft Windows NT® 4.0, Windows® 2000, Windows XP, Windows .NET
- Novell® NetWare® 5.1, 6.0
- Red Hat Linux

NOTE: Refer to the MegaRAID Driver Installation Guide for the procedures used to install operating system drivers.

Important

When booting the system from a drive connected to a MegaRAID controller and using EMM386.EXE, MEGASPI.SYS must be loaded in CONFIG.SYS before EMM386.EXE is loaded. If you do not do this, you cannot access the boot drive after EMM386 is loaded.

Summary

This chapter discussed hardware installation. Configure the RAID system using software configuration utilities. See the *MegaRAID Configuration Software Guide* for all information about MegaRAID SCSI 320-0 software utilities. The utility programs for configuring MegaRAID SCSI 320-0 are shown in Table 6-9.

Table 6-9. Configuration Utilities and Operating Systems

Configuration Utility	Operating System
MegaRAID BIOS	Independent of the operating system
Configuration Utility	
WebBIOS Configuration	Independent of the operating system
Utility	
MegaRAID Manager	DOS
	Red Hat Linux 7.2, 7.3
	Novell NetWare 5.1, 6.0
Power Console Plus	Microsoft Windows NT
	Windows 2000
	Windows XP
	Windows .NET

Chapter 7 Troubleshooting

This section lists the problems that can occur, along with suggested solutions. Table 7-1 describes general problems you might encounter, along with suggested solutions.

Table 7-1. General Problems and Suggested Solutions

Problem	Suggested Solution
The system hangs during the boot	Make sure the SCSI BIOS on the motherboard
process after installation.	has been disabled.
The system hangs during the boot	Make sure the MegaRAID SCSI 320-0 adapter
process after installation.	card is installed in the proper PCI expansion
	slot. It must be installed in the RAID Upgrade
	PCI slot.
Some operating systems do not load	Check the system BIOS configuration for PCI
in a computer with a MegaRAID	interrupt assignments. Make sure some
SCSI 320-0 adapter.	Interrupts are assigned for PCI.
	Initialize the logical drive before installing the
	operating system.
One of the hard drives in the array	Check the drive error counts using Power
fails often.	Console Plus. See the MegaRAID
	Configuration Software Guide for more
	information.
	Format the drive.
	Rebuild the drive
	If the drive continues to fail, replace the drive
	with another drive with the same capacity.
Pressed <ctrl><m>. Ran</m></ctrl>	Check the drives IDs on each channel to make
Megaconf.exe and tried to make a	sure each device has a different ID.
new configuration. The system	
hangs when scanning devices.	Check the termination. The device at the end of
	the channel must be terminated.
	Replace the drive cable.
Multiple drives using the same	Set the drives to spin on command. This will
power supply. There is a problem	allow MegaRAID SCSI 320-0 to spin two
spinning the drives all at once.	devices simultaneously.
Pressing <ctrl><m> or running</m></ctrl>	These utilities require a color monitor.
megaconf.exe does not display the	
Management Menu.	

Problem	Suggested Solution
Cannot flash or update the	You may need a new EEPROM.
EEPROM.	
Firmware Initializing	Make sure that TERMPWR is being properly provided to each peripheral device populated
appears and remains on the screen.	channel.
	Make sure that each end of the channel chain is properly terminated using the recommended terminator type for the peripheral device.
	Make sure (on a channel basis) only two types of cables are connected at any one time.
	Make sure that the MegaRAID SCSI 320-0 controller is properly seated in the ZCR PCI slot.
What SCSI IDs can a non-hard disk	Non-hard disk devices can accommodate only
device have and what is maximum number allowed per adapter?	SCSI IDs 1, 2, 3, 4, 5 or 6, regardless of the channel used. A maximum of six non-hard disk
number anowed per adapter:	devices are supported per MegaRAID SCSI
	320-0 adapter.

BIOS Boot Error Messages

Table 7-2 describes error messages that can display when you boot the system, and suggested solutions.

Table 7-2. BIOS Boot Error Messages

Message	Problem	Suggested Solution
Adapter BIOS Disabled.	The MegaRAID BIOS is	Enable the BIOS using the
No Logical Drives	disabled. Sometimes the	MegaRAID BIOS
Handled by BIOS	BIOS is disabled to	Configuration Utillty.
	prevent booting from the	
	BIOS.	
Host Adapter at Baseport	The BIOS cannot	Make sure MegaRAID
xxxx Not Responding	communicate with the	SCSI 320-0 is properly
	adapter firmware.	installed.
No MegaRAID SCSI 320-	The BIOS cannot	Make sure MegaRAID
0 Adapter	communicate with the	SCSI 320-0 is properly
	adapter firmware.	installed.
Configuration of non-	The configuration stored	Press a key to run
volatile random access	in the MegaRAID SCSI	MegaRAID Manager.
memory (NVRAM) and	320-0 adapter does not	
drives mismatch.	match the configuration	Select View/Add
Run View/Add	stored in the drives.	Configuration from the
Configuration option of		Configure menu.
Configuration Utility.		
Press any key to run the		Use View/Add
Configuration Utility.		Configuration to examine
		both the configuration in
		NVRAM and the
		configuration stored on the
		disk drives. Resolve the
		problem by selecting one
		of the configurations.
1 Logical Drive Failed	A logical drive failed to	Make sure all physical
	sign on.	drives are properly
		connected and are powered
		on.
		Run MegaRAID Manager
		to find out if any physical
		drives are not responding.
		Reconnect, replace, or
		rebuild any drive that is not
		responding.

Message	Problem	Suggested Solution
X Logical Drives	x number of logical drives	Make sure all physical
Degraded	signed on in a degraded	drives are properly
	state.	connected and are powered
		on.
		Run MegaRAID Manager
		to find if any physical
		drives are not responding.
		Reconnect, replace, or
		rebuild any drive that is not
		responding.
1 Logical Drive Degraded	A logical drive signed on	Make sure all physical
	in a degraded state.	drives are properly
		connected and are powered
		on.
		D. M. DAIDM
		Run MegaRAID Manager
		to find out if any physical
		drives are not responding. Reconnect, replace, or
		rebuild any drive that is not
		responding.
The following SCSI IDs	The physical drives with	Make sure the physical
are not responding:	SCSI IDs a, b, and c are	drives are properly
Channel x:a.b.c	not responding on SCSI	connected and are powered
	channel x.	on.

Other BIOS Error Messages

Table 7-3 describes other BIOS error messages, their meaning, and suggested solutions.

Table 7-3. Other BIOS Error Messages

Message	Problem	Suggested Solution
Following SCSI	The physical disk roaming	Reconfigure the array.
disk not found	feature did not find the physical	
and no empty	disk with the displayed SCSI ID.	
slot available for	No slot is available to map the	
mapping it	physical drive. MegaRAID	
	cannot resolve the physical	
	drives into the current	
	configuration.	
Following SCSI	The physical drive roaming	Remove the drive or drives that
IDs have the	feature found the same data on	should not be used.
same data y, z	two or more physical drive on	
Channel x: a, b,	channel x with SCSI IDs a, b,	
c	and c. MegaRAID cannot	
	determine the drive that has the	
	duplicate information.	
Unresolved	The configuration stored in the	Press a key to run MegaRAID
configuration	MegaRAID NVRAM does not	Manager.
mismatch	match the configuration stored	
between disks	on the drives.	Select View/Add Configuration
and NVRAM on		from the Configure menu.
the adapter		
		Use View/Add Configuration to
		examine both the configuration
		in NVRAM and the
		configuration stored on the disk
		drives. Resolve the problem by
		selecting one of the
		configurations.

Other Potential Problems

Table 7-4 describes other potential problems.

Table 7-4. Other Potential Problems

Topic	Information	
DOS ASPI	MEGASPI.SYS, the MegaRAID DOS ASPI manager, uses	
	6 KB of system memory once it is loaded.	
CD drives under DOS	At this time, copied CDs are not accessible from DOS even	
	after loading MEGASPI.SYS and MEGACDR.SYS.	
Physical drive errors	To display the MegaRAID Manager Media Error and Other	
	Error options, select the Objects menu, then Physical Drive.	
	Select a physical drive and press <f2>. The windows</f2>	
	displays the number of errors.	
	A Media Error is an error that occurred while actually	
	transferring data. An Other Error is an error that occurs at	
	the hardware level because of a device failure, poor cabling,	
	bad termination, signal loss, etc.	
Virtual sizing	The virtual sizing option enables RAID expansion. Virtual	
	sizing must be enabled to increase the size of a logical drive	
	or add a physical drive to an existing logical drive.	
	Run the BIOS Configuration Utility by pressing	
	<ctrl><m> to enable virtual sizing. Select Objects, then</m></ctrl>	
	Logical Drive. Next, select View/Update Parameters, then	
	set virtual sizing to Enabled.	
BSD Unix	We do not provide a driver for BSDI Unix. MegaRAID	
	SCSI 320-0 does not support BSDI Unix.	
Multiple LUNs	MegaRAID SCSI 320-0 supports one logical unit number	
	(LUN) per each target ID. No multiple LUN devices are	
	supported.	
MegaRAID power	The maximum MegaRAID SCSI 320-0 power requirements	
requirements	are 15 watts at 5V and 3 Amps.	

Topic	Information
SCSI bus	The ANSI specification dictates the following:
requirements	
•	The maximum signal path length between terminators is 3
	meters when using up to 4 maximum capacitance (25 pF)
	devices and 1.5 meters when using more than 4 devices.
	SCSI devices should be uniformly spaced between
	terminators, with the end devices located as close as possible to the terminators.
	The characteristic impedance of the cable should be 90 +/- 6 ohms for the /REQ and /ACK signals and 90 +/- 10 ohms
	for all other signals.
	The stub length (the distance from the controller's external
	connector to the mainline SCSI bus) shall not exceed 0.1m
	(approximately 4 inches).
	The spacing of devices on the mainline SCSI bus should be
	at least three times the stub length.
	All signal lines shall be terminated once at both ends of the
	bus powered by the TERMPWR line.

Topic	Information	
Windows NT Installation	When Windows NT is installed using a bootable CD, the devices on the MegaRAID SCSI 320-0 will not be recognized until after the initial reboot. The Microsoft documented workaround is in SETUP.TXT. SETUP.TXT is on the CD. To install drivers when Setup recognizes one of the supported SCSI host adapters without making the devices	
	attached to it available for use: 1 Restart Windows NT Setup. 2 Press <f6> to prevent Windows NT Setup from performing disk controller detection when Windows NT Setup displays the following:</f6>	
	Setup is inspecting your computer's hardware configuration,	
	This allows you to install the driver from the drivers disk you created. All SCSI adapters must be installed manually.	
	3 Press <s> to display a list of supported SCSI host adapters when Windows NT Setup displays the following:</s>	
	Setup could not determine the type of one or more mass storage devices installed in your system, or you have chosen to manually specify an adapter,	
	4 Select Other from the bottom of the list.	
	5 Insert the drivers disk you made when prompted to do so and select MegaRAID SCSI 320-0 from this list.	
	In some cases, Windows NT Setup repeatedly prompts to swap disks. Windows NT will recognize any devices attached to this adapter.	
	6 Repeat this step for each host adapter not already recognized by Windows NT Setup.	

Appendix A Audible Warnings

The MegaRAID SCSI 320-0 RAID controller has an onboard tone generator that indicates events and errors.

NOTE: This is available only if the optional series 502 Battery Backup Unit (BBU) is installed

Table A-1. Audible Warnings and Descriptions

Tone Pattern	Meaning	Examples
Three seconds on	A logical drive is	One or more drives in a RAID
and one second	offline.	0 configuration failed.
off		
		Two or more drives in a RAID
		1, or 5 configuration failed.
One second on	A logical drive is	One drive in a RAID 5
and one second	running in degraded	configuration failed.
off	mode.	
One second on	An automatically	While you were away from the
and three seconds	initiated rebuild has	system, a disk drive in a RAID
off	been completed.	1, or 5 configuration failed and
		was rebuilt.

Glossary

Array

A grouping or array of disk drives combines the storage space on the disk drives into a single segment of contiguous storage space. MegaRAID can group disk drives on one or more SCSI channels into an array. A hot spare drive does not participate in an array.

Array Management Software Software that provides common control and management for a disk array. Array Management Software most often executes in a disk controller or intelligent host bus adapter, but can also execute in a host computer. When it executes in a disk controller or adapter, Array Management Software is often called firmware.

Array Spanning Array spanning by a logical drive combines storage space in two arrays of disk drives into a single, contiguous storage space in a logical drive. MegaRAID logical drives can span consecutively numbered arrays that each consist of the same number of disk drives. Array spanning promotes RAID levels 1, and 5 to RAID levels 10, and 50, respectively. See also Disk Spanning.

Asynchronous Operations Operations that bear no relationship to each other in time and can overlap. The concept of asynchronous I/O operations is central to independent access arrays in throughput-intensive applications.

Cache I/O

A small amount of fast memory that holds recently accessed data. Caching speeds subsequent access to the same data. It is most often applied to processor-memory access, but can also be used to store a copy of data accessible over a network. When data is read from or written to main memory, a copy is also saved in cache memory with the associated main memory address. The cache memory software monitors the addresses of subsequent reads to see if the required data is already stored in cache memory. If it is already in cache memory (a cache hit), it is read from cache memory immediately and the main memory read is aborted (or not started.) If the data is not cached (a cache miss), it is fetched from main memory and saved in cache memory.

Channel An electrical path for the transfer of data and control information between a disk and a disk controller.

Consistency Check An examination of the disk system to determine whether all conditions are valid for the specified configuration (such as parity.)

Cold Swap A cold swap requires that you turn the power off before replacing a defective hard drive in a disk subsystem.

Data Transfer Capacity The amount of data per unit time moved through a channel. For disk I/O, bandwidth is expressed in megabytes per second (MB/s).

Degraded A drive that has become non-functional or has decreased in performance.

Disk

A non-volatile, randomly addressable, rewritable mass storage device, including both rotating magnetic and optical disks and solid-state disks, or non-volatile electronic storage elements. It does not include specialized devices such as write-once-read-many (WORM) optical disks, nor does it include so-called RAM disks implemented using software to control a dedicated portion of a host computer volatile random access memory.

Disk Array

A collection of disks from one or more disk subsystems combined with array management software. It controls the disks and presents them to the array operating environment as one or more virtual disks.

Disk Duplexing

A variation on disk mirroring where a second disk adapter or host adapter and redundant disk drives are present.

Disk Mirroring

Writing duplicate data to more than one (usually two) hard disks to protect against data loss in the event of device failure. It is a common feature of RAID systems.

Disk Spanning

Disk spanning allows multiple disk drives to function like one big drive. Spanning overcomes lack of disk space and simplifies storage management by combining existing resources or adding relatively inexpensive resources. For example, four 36 GB disk drives can be combined to appear to the operating system as one single 144 GB drive. See also Array Spanning and Spanning.

Disk Striping

A type of disk array mapping. Consecutive stripes of data are mapped round-robin to consecutive array members. A striped array (RAID Level 0) provides high I/O performance at low cost, but provides lowers data reliability than any of its member disks.

Disk Subsystem A collection of disks and the hardware that connects them to one or more host computers. The hardware can include an intelligent controller or the disks can attach directly to a host computer I/O a bus adapter.

Double Buffering A technique that achieves maximum data transfer bandwidth by

constantly keeping two I/O requests for adjacent data outstanding. A software component begins a double-buffered I/O stream by issuing two requests in rapid sequence. Thereafter, each time an I/O request completes, another is immediately issued. If the disk subsystem is capable of processing requests fast enough, double buffering allows data to be transferred at the full-volume transfer rate.

Failed Drive

A drive that has ceased to function or consistently functions improperly.

Fast SCSI

A variant on the SCSI-2 bus. It uses the same 8-bit bus as the original SCSI-1, but runs at up to 10MB (double the speed of SCSI-1.)

Firmware

Software stored in read-only memory (ROM) or Programmable ROM (PROM). Firmware is often responsible for the behavior of a system when it is first turned on. A typical example would be a monitor program in a computer that loads the full operating system from disk or from a network and then passes control to the operating system.

FlexRAID Power Fail Option The FlexRAID Power Fail option allows a reconstruction to restart if a power failure occurs. This is the advantage of this option. The disadvantage is, once the reconstruction is active, the performance is slower because an additional activity is added.

Format The process of writing zeros to all data fields in a physical drive (hard

drive) to map out unreadable or bad sectors. Because most hard drives are factory formatted, formatting is usually only done if a hard disk

generates many media errors.

GB Shorthand for 1,000,000,000 (10 to the ninth power) bytes. It is the

same as 1,000 MB (megabytes).

Host-based Array A disk array with an Array Management Software in its host computer rather than in a disk subsystem.

Host Computer Any computer that disks are directly attached to. Mainframes, servers,

workstations, and personal computers can all be considered host

computers.

Hot Spare A stand-by drive ready for use if another drive fails. It does not contain

any user data. Up to eight disk drives can be assigned as hot spares for an adapter. A hot spare can be dedicated to a single redundant array or it can be part of the global hot-spare pool for all arrays controlled by the

adapter.

Hot Swap The substitution of a replacement unit in a disk subsystem for a

defective one, where the substitution can be performed while the subsystem is running (performing its normal functions). Hot swaps are

manual.

I/O Driver A host computer software component (usually part of the operating

system) that controls the operation of peripheral controllers or adapters attached to the host computer. I/O drivers communicate between applications and I/O devices, and in some cases participates in data

transfer.

Initialization The process of writing zeros to the data fields of a logical drive and

generating the corresponding parity to put the logical drive in a Ready state. Initializing erases previous data and generates parity so that the logical drive will pass a consistency check. Arrays can work without initializing, but they can fail a consistency check because the parity

fields have not been generated.

Logical Disk A set of contiguous chunks on a physical disk. Logical disks are used in

array implementations as constituents of logical volumes or partitions. Logical disks are normally transparent to the host environment, except

when the array containing them is being configured.

Logical Drive A virtual drive within an array that can consist of more than one physical

drive. Logical drives divide the contiguous storage space of an array of disk drives or a spanned group of arrays of drives. The storage space in a logical drive is spread across all the physical drives in the array or

spanned arrays. Configure at least one logical drive for each array.

Mapping The conversion between multiple data addressing schemes, especially

conversions between member disk block addresses and block addresses of the virtual disks presented to the operating environment by Array

Management Software.

MB (Megabyte) An abbreviation for 1,000,000 (10 to the sixth power) bytes.

It is the same as 1,000 KB (kilobytes).

Multi-threaded Having multiple concurrent or pseudo-concurrent execution sequences. Used to describe processes in computer systems. Multi-threaded processes allow throughput-intensive applications to efficiently use a disk array to increase I/O performance.

Operating Environment The operating environment includes the host computer where the array is attached, any I/O buses and adapters, the host operating system, and any additional software required to operate the array. For host-based arrays, the operating environment includes I/O driver software for the member disks, but does not include Array Management Software, which is regarded as part of the array itself.

Parity

Parity is an extra bit added to a byte or word to reveal errors in storage (in RAM or disk) or transmission. Parity is used to generate a set of redundancy data from two or more parent data sets. The redundancy data can be used to reconstruct one of the parent data sets. However, parity data does not fully duplicate the parent data sets. In RAID, this method is applied to entire drives or stripes across all disk drives in an array. Parity consists of dedicated parity, in which the parity of the data on two or more drives is stored on an additional drive, and distributed parity, in which the parity data are distributed among all the drives in the system. If a single drive fails, it can be rebuilt from the parity of the respective data on the remaining drives.

Partition

An array virtual disk made up of logical disks rather than physical ones. Also known as logical volume.

Physical Disk

A hard disk drive that stores data. A hard disk drive consists of one or more rigid magnetic discs rotating about a central axle with associated read/write heads and electronics.

Physical Disk Roaming The ability of some adapters to detect when hard drives have been moved to a different slots in the computer, for example, after a hot swap.

Protocol

A set of formal rules describing how to transmit data, especially across a network. Low level protocols define the electrical and physical standards to be observed, bit- and byte- ordering, and the transmission and error detection and correction of the bit stream. High level protocols deal with the data formatting, including the message syntax, the terminal-tocomputer dialogue, character sets, and sequencing of messages.

RAID

Redundant Array of Independent Disks (originally Redundant Array of Inexpensive Disks) is an array of multiple small, independent hard disk drives that yields performance exceeding that of a Single Large Expensive Disk (SLED). A RAID disk subsystem improves I/O performance on a server using only a single drive. The RAID array appears to the host server as a single storage unit. I/O is expedited because several disks can be accessed simultaneously.

RAID Levels

A style of redundancy applied to a logical drive. It can increase the performance of the logical drive and can decrease usable capacity. Each logical drive must have a RAID level assigned to it. The RAID level drive requirements are: RAID 0 requires one or more physical drives, RAID 1 requires exactly two physical drives, RAID 5 requires at least three physical drives. RAID levels 10 and 50 result when logical drives span arrays. RAID 10 results when a RAID 1 logical drive spans arrays. RAID 50 results when a RAID 5 logical drive spans arrays.

RAID Migration RAID migration is used to move between optimal RAID levels or to change from a degraded redundant logical drive to an optimal RAID 0. In Novell, the utility used for RAID migration is MEGAMGR and in Windows NT its Power Console Plus. If a RAID 1 is being converted to a RAID 0, instead of performing RAID migration, one drive can be removed and the other reconfigured on the controller as a RAID 0. This is due to the same data being written to each drive.

Read-Ahead

A memory caching capability in some adapters that allows them to read sequentially ahead of requested data and store the additional data in cache memory, anticipating that the additional data will be needed soon. Read-Ahead supplies sequential data faster, but is not as effective when accessing random data.

Ready State

A condition in which a workable hard drive is neither online nor a hot spare and is available to add to an array or to designate as a hot spare.

Rebuild

The regeneration of all data from a failed disk in a RAID level 1, or 5 array to a replacement disk. A disk rebuild normally occurs without interruption of application access to data stored on the array virtual disk.

Rebuild Rate

The percentage of CPU resources devoted to rebuilding.

Reconstruct

The act of remaking a logical drive after changing RAID levels or adding a physical drive to an existing array.

Redundancy

The provision of multiple interchangeable components to perform a single function to cope with failures or errors. Redundancy normally applies to hardware; a common form of hardware redundancy is disk mirroring.

Replacement Disk A disk available to replace a failed member disk in a RAID array.

Replacement Unit A component or collection of components in a disk subsystem that are always replaced as a unit when any part of the collection fails. Typical replacement units in a disk subsystem includes disks, controller logic boards, power supplies, and cables. Also called a hot spare.

SAF-TE

SCSI-accessed fault-tolerant enclosure. An industry protocol for managing RAID enclosures and reporting enclosure environmental information.

SCSI

(Small computer system interface) A processor-independent standard for system-level interfacing between a computer and intelligent devices, including hard disks, floppy disks, CD-ROM, printers, scanners, etc. SCSI can connect up to seven devices to a single adapter (or host adapter) on the computer's bus. SCSI transfers eight or 16 bits in parallel and can operate in either asynchronous or synchronous modes. The synchronous transfer rate is up to 320 MB/s. SCSI connections normally use single-ended drivers, as opposed to differential drivers.

The original standard is now called SCSI-1 to distinguish it from SCSI-2 and SCSI-3, which include specifications of Wide SCSI (a 16-bit bus) and Fast SCSI (10 MB/s transfer.) Ultra320 SCSI is a subset of Ultra3 SCSI and allows a maximum throughput of 320 MB/s, which is twice as fast as Wide Ultra2 SCSI.

SCSI Channel

MegaRAID controls the disk drives through SCSI-2 buses (channels) over which the system transfers data in either Fast and Wide or Ultra SCSI mode. Each adapter can control up to three SCSI channels. Internal and external disk drives can be mixed on channels 0 and 1, but not on channel 2.

SCSI ID A SCSI physical drive can be in one of these states:

- Online Powered-on and operational.
- Hot Spare Powered-on stand-by disk drive, ready for use if an online disk fails.
- Rebuild A disk drive to which one or more logical drives is restoring data.
- Not Responding The disk drive is not present, is not powered-on, or has failed.

Service Provider The Service Provider (SP) is a program that resides in the desktop system or server and is responsible for all DMI activities. This layer collects management information from products (whether system hardware, peripherals or software) stores that information in the DMI database and passes it to management applications as requested.

SNMP

Simple network management protocol, the most widely used protocol for communication management information between the managed elements of a network and a network manager. SNMP focuses primarily on the network backbone. The Internet standard protocol that manages nodes on an Internet Protocol (IP) network.

Spanning

Array spanning by a logical drive combines storage space in two arrays of disk drives into a single, contiguous storage space in a logical drive. MegaRAID logical drives can span consecutively numbered arrays that each consist of the same number of disk drives. Array spanning promotes RAID levels 1, and 5 to RAID levels 10, and 50, respectively. See also *Disk Spanning* and *Spanning*.

Spare A hard drive available to back up the data of other drives.

Stripe Size The amount of data contiguously written to each disk. You can specify

stripe sizes of 4 KB, 8 KB, 16 KB, 32 KB, 64 KB, and 128 KB for each logical drive. For best performance, choose a stripe size equal to or

smaller than the block size used by the host computer.

Stripe Width The number of disk drives across which the data are striped.

Striping Segmentation of logically sequential data, such as a single file, so that

segments can be written to multiple physical devices in a round-robin fashion. This technique is useful if the processor can read or write data faster than a single disk can supply or accept it. While data is being transferred from the first disk, the second disk can locate the next segment. Data striping is used in some modern databases and in certain

RAID devices.

Terminator A resistor connected to a signal wire in a bus or network for impedance

matching to prevent reflections, e.g., a 50 ohm resistor connected across the end of an Ethernet cable. SCSI chains and some LocalTalk wiring

schemes also require terminators.

Ultra320 SCSI is a subset of Ultra3 SCSI and allows a maximum

throughput of 320 MB/s, which is twice as fast as Wide Ultra2 SCSI. It

provides 320 MBs on a 16-bit connection.

Virtual Sizing FlexRAID virtual sizing is used to create a logical drive up to 80 GB. A

maximum of 40 logical drives can be configured on a RAID controller and RAID migration is possible for all logical drives except the fortieth. Because it is not possible to do migration on the last logical drive, the

maximum space available for RAID migration is 560 GB.

Wide SCSI A variant on the SCSI-2 interface. Wide SCSI uses a 16-bit bus, double

the width of the original SCSI-1. Wide SCSI devices cannot be connected to a SCSI-1 bus. Wide SCSI supports transfer rates up to 20

MB/s, like Fast SCSI.

Index

Α

Array, 61

Array Configuration Planner, 41

Array management software, 61

Array performance features, 24

Array spanning, 61

Creating hot spares, 36

Creating logical drives, 36

Assigning RAID levels, 38 Disconnect/reconnect, 27 Asynchronous operations, 61 Disk, 62 Audible Warnings, 59 Disk array, 62 Automatic failed drive detection and Disk Array Types, 14 rebuild, 29 Disk duplexing, 62 Disk mirroring, 10, 62 Disk rebuild, 13 B Disk spanning, 11, 62 Disk striping, 9, 62 BIOS, 26 Disk subsystem, 62 BIOS Boot Error Messages, 53 Distributed parity, 12 BIOS Configuration Utility, 48 Documentation, 3 BIOS message, 48 DOS, 26 Bus data transfer rate, 26 Double buffering, 62 Bus type, 26 Drive roaming, 23 Bus-based, 14 Drive states, 14 Drivers, 49 C E Cable Length, 11 Maximum, 2 Enclosure management, 14 Cache configuration, 26 Cache I/O, 61 F Cache Memory, 27 Card size, 26 Channel, 61 Fail, 14 Failed, 13 Cold swap, 61 Compatibility, 29 Failed drive, 62 Configuration Features, 24 Fast SCSI, 62 Configuration on Disk, 23 Fault tolerance, 8 Configuration Strategies, 37 Fault tolerance features, 25 Configuring Arrays, 36 Fault-tolerance, 28 Configuring Logical Drives, 39 Features, 1, 23 Configuring SCSI physical drives, 31 Firmware, 26, 62 Consistency check, 8, 61 Flash ROM, 1 FlexRAID Power Fail option, 62 CPU, 26

D

Data redundancy

Using mirroring, 10

Data transfer capacity, 61

Dedicated parity, 12

Degraded, 13, 61

Format, 63

G	Multi-threaded, 64
GB, 63 Glossary, 61	N
H	Nonvolatile RAM, 26 Novell NetWare, 26, 49 NVRAM, 1
Hardware Installation, 43 Hardware Requirements, 23 Host computer, 63	0
Host-based array, 63 Host-based RAID solution, 7 Hot spare, 12, 14, 63	Offline, 13 Online Drive state, 14
Using during disk rebuild, 13 Hot swap, 12, 29, 63	Operating environment, 64 Operating system software drivers, 26 Operating voltage, 26
	Optimal, 13 Optimizing Data Storage, 40 Other BIOS error messages, 55
I/O driver, 63 Initialization, 63 Install Drivers, 49	Р
Installation steps Custom, 44	Package contents, 6 Parity, 12, 64
J	Partition, 64 PCI controller, 26 Physical array, 8
Jumpers on motherboard, 45 Setting, 45	Physical disk, 64 Physical disk roaming, 64 Physical drive, 8 Power Console Plus, 28
L	Problem Report Form, 7 Processor, 26
Linux Red Hat, 26	Product specifications, 26 Protocol, 64
Logical drive, 8, 63 Logical drive states, 13	R
M	RAID, 64 Benefits, 5 Introduction to, 5
Mapping, 63 MB, 63	RAID 0, 17 RAID 1, 18
MegaRAID BIOS, 27 MegaRAID BIOS Configuration Utility, 28	Spanning to configure RAID 10, 11 RAID 10, 20 Configuring, 11
MegaRAID Manager, 28 MegaRAID SCSI 320-0 card Installing, 46	RAID 5, 19 Spanning to make RAID 50, 11 RAID 50, 21
MegaRAID SCSI 320-0 card layout, 45 Mirroring, 10	Configuring, 11 RAID benefits
Motherboard jumpers, 45 MS-DOS, 49	Improved I/O, 5 Increased reliability, 5

RAID levels, 15, 65 RAID levels supported, 26 RAID management, 28 RAID management features, 25 RAID migration, 65 RAID overview, 8 Read-ahead, 65 Ready, 14 Ready state, 65 Rebuild, 14, 27 Rebuild rate, 13, 65 Rebuilding a disk, 13 Reconnect, 27 Reconstruct, 65 Reconstruction, 65 Red Hat Linux, 49 RedAlert, 29 Redundancy, 65 Replacement disk, 65 Replacement unit, 65

S

SAF-TE, 65 SCSI, 66 SCSI backup and utility software, 29 SCSI bus widths and maximum throughput, 2 SCSI buses, 1 SCSI channel, 66 SCSI data transfer rate, 26 SCSI Device Compatibility, 29 SCSI device types supported, 26 SCSI drive states, 14 SCSI firmware, 27 SCSI ID, 66 SCSI to SCSI, 14 SCSI-to-SCSI RAID product, 7 Selecting a RAID level, 16 Server management, 29 Service provider, 66 SLED, 5

SMART Technology, 23 SNMP, 66 SNMP agent, 29 SNMP managers, 29 Software utilities, 25 Software-based, 14 Spanning, 11, 66 Spare, 67 Standby rebuild, 13 Stripe size, 9, 27, 67 Stripe width, 9, 67 Striping, 67

Т

Technical Support, 7 Terminator, 67 Troubleshooting, 51 Types of Parity, 12

U

Ultra320 and Wide SCSI, 23 Ultra3-SCSI (320M), 67 Unpack, 44

Virtual sizing, 67

W

Web site, 7
WebBIOS Configuration Utility, 28
Wide SCSI, 67
Windows .NET, 49
Windows 2000, 49
Windows NT, 26, 49
Windows XP, 49